scholarly journals First Report of Cucurbit Chlorotic Yellows Virus from Cucumber Plants Affected by Interveinal Yellowing Disease in Jordan

Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3277
Author(s):  
N. M. Salem ◽  
S. Araj ◽  
T. Alshareef ◽  
M. Abu Muslem ◽  
H. Bess ◽  
...  
Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1446-1446 ◽  
Author(s):  
C. Orfanidou ◽  
V. I. Maliogka ◽  
N. I. Katis

In 2011, an outbreak of a yellowing disease causing chlorosis and Interveinal chlorotic spots on lower leaves was observed in cucumber (Cucumis sativus) and melon (C. melo) plants in two greenhouses on the island of Rhodes, Greece. Similar symptoms were observed in 2012 in open field watermelon (Citrullus lanatus) plants in Rhodes and in November 2013 in a cucumber greenhouse in Tympaki, Crete. Disease incidence ranged from 10 to 40%. The observed symptoms were similar to those caused by whitefly transmitted criniviruses (family Closteroviridae) Cucurbit yellow stunting disorder virus (CYSDV) and Beet pseudo-yellows virus (BPYV), as well as Cucurbit chlorotic yellows virus (CCYV), a recently described crinivirus that infects cucurbits in Japan (4) and by the aphid transmitted polerovirus (family Luteoviridae) Cucurbit aphid-borne yellows virus (CABYV). Dense populations of whiteflies were present in all the affected crops. Leaf samples from cucumber (10 from Rhodes and 10 from Crete), melon (10), and watermelon (10) were collected and tested for the presence of the above viruses. Total RNA was extracted from the samples (2) and detection of BPYV, CYSDV, and CABYV was done as previously described (1,3) whereas detection of CCYV was conducted by herein developed two-step RT-PCR assays. Two new pairs of primers, ‘CC-HSP-up’ (5′-GAAGAGATGGGTTGGTGTAGATAAA-3′)/‘CC-HSP-do’ (5′-CACACCGATTTCATAAACATCCTTT-3′) and ‘CC-RdRp-up’ (5′-CCTAATATTGGAGCTTATGAGTACA-3′)/‘CC-RdRp-do’ (5′-CATACACTTTAAACACAACCCC-3′) were designed based on GenBank deposited sequences of CCYV for the amplification of two regions partially covering the heat shock protein 70 homologue (HSP70h) (226 bp) and the RNA dependent RNA polymerase (RdRp) genes (709 bp). Interestingly, CCYV was detected in all samples tested, while CYSDV was detected in 18 cucumbers (10 from Rhodes and 8 from Crete), 1 melon, and 3 watermelon plants. Neither BPYV nor CABYV were detected. In order to verify the presence of CCYV, the partial HSP70h and RdRp regions of a cucumber isolate from Crete were directly sequenced using the primers ‘CC-HSP-up’/‘CC-HSP-do’ and ‘CC-RdRp-up’/‘CC-RdRp-do’. BLAST analysis of the obtained sequences (HG939521 and 22) showed 99% and 100% identities with the HSP70h and RdRp of cucumber CCYV isolates from Lebanon, respectively (KC990511 and 22). Also, the partial HSP70h sequence of a watermelon CCYV isolate from Rhodes showed 99% identity with the cucumber isolate from Crete. Whitefly transmission of CCYV was also carried out by using an infected cucumber from Crete as virus source. Four groups of 30 whitefly adults of Bemisia tabaci biotype Q were given an acquisition and inoculation access time of 48 and 72 h, respectively. Each whitefly group was transferred to a healthy cucumber plant (hybrid Galeon). Two weeks post inoculation, the plants, which have already been showing mild interveinal chlorosis, were tested for virus presence by RT-PCR. CCYV was successfully transmitted in three of four inoculated cucumbers, which was further confirmed by sequencing. In Greece, cucurbit yellowing disease has occurred since the 1990s, with CYSDV, BPYV, and CABYV as causal agents. To our knowledge, this is the first report of CCYV infecting cucurbits in Greece; therefore, our finding supports the notion that the virus is spreading in the Mediterranean basin and is an important pathogen in cucurbit crops. References: (1) I. N. Boubourakas et al. Plant Pathol. 55:276, 2006. (2) E. Chatzinasiou et al. J. Virol. Methods 169:305, 2010. (3) L. Lotos et al. J. Virol. Methods 198:1, 2014. (4) M. Okuda et al. Phytopathology 100:560, 2010.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 778-778 ◽  
Author(s):  
W. M. Wintermantel ◽  
L. L. Jenkins Hladky ◽  
P. Fashing ◽  
K. Ando ◽  
J. D. McCreight

Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 354-354 ◽  
Author(s):  
R. Zeng ◽  
F. M. Dai ◽  
W. J. Chen ◽  
J. P. Lu

In October 2007, symptoms of chlorosis on the upper leaves and a bright yellow color on the lower leaves were observed sporadically on hami melon (Cucumis melo cv. Xuelihong) in a high tunnel in Nanhui of Shanghai, China. Disease progresses from initial mottling of leaves into leaves that are completely yellow with the veins remaining green. The oldest leaves develop symptoms first, so these leaves have a pronounced even yellow color. In October 2009, these symptoms were found in all melons produced in the suburbs of Shanghai. These symptoms were similar to those caused by Cucurbit yellow stunting disorder virus (CYSDV) and Cucurbit chlorotic yellows virus (CCYV) (1–3). Twelve samples from symptomatic melons were collected in the Jiading, Nanhui, Fengxian, and Chongming districts of Shanghai for virus diagnosis. Large populations of whiteflies were observed in association with the diseased cucurbit crops. Total RNA was extracted with Trizol reagents (Invitrogen, Carlsbad, CA). We used random primers (9-mer) for reverse transcription-PCR. Extracts were for CYSDV using specific primers CYSDV-CP-F (5′-ATGGCGAGTTCGAGTGAGAA-3′) and CYSDV-CP-R (5′-TCAATTACCACAGCCACCTG-3′) to amplify a 756-bp fragment of coat protein gene and CCYV using specific primers CCYV-HSP-F1 (5′-TGCGTATGTCAATGGTGTTATG-3′) and CCYV-HSP-R1 (5′-ATCCTTCGCAGTGAAAAACC-3′) to amplify a 462-bp fragment of the HSP gene (1). CYSDV was not found in all samples. The expected 462-bp target fragment of CCYV was obtained in all samples but not from any of the healthy controls. All the 462-bp PCR products were cloned to pGEM-T vector (Promega, Madison, WI) and sequenced. All sequences obtained were homologous. A comparison of the submitted sequence (GenBank Accession No. HQ148667) with those in GenBank showed that the sequence had 100% nucleotide identity to the Hsp70h sequences of (CCYV) isolates from Japan (Accession Nos. AB523789 and AB457591) (1,4), Taiwan (Accession No. HM120250) (2), and mainland of China (Accession Nos. GU721105, GU721108, and GU721110). CCYV is a new member of the genus Crinivirus, first discovered in Japan in 2004 (4) and reported in Taiwan in 2009 (2). To our knowledge, this is the first report of CCYV on melon in China. References: (1) Y. Gyoutoku et al. Jpn. J. Phytopathol. 75:109, 2009. (2) L.-H. Huang et al. Plant Dis. 94:1168, 2010. (3) L. Z. Liu et al. Plant Dis.94:485, 2010. (4) M. Okuda et al. Phytopathology 100:560, 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hae-Ryun Kwak ◽  
Hui-Seong Byun ◽  
Hong-Soo Choi ◽  
Jong-Woo Han ◽  
Chang-Seok Kim ◽  
...  

In October 2018, cucumber plants showing yellowing and chlorotic mottle symptoms were observed in a greenhouse in Chungbuk, South Korea. The observed symptoms were similar to those caused by cucurbit aphid-borne yellows virus (CABYV), which has been detected on cucumber plants in the region since it was reported on melon in Korea in 2015 (Lee et al 2015). To identify the potential agents causing these symptoms, 28 samples from symptomatic leaves and fruit of cucumber plants were subjected to total RNA extraction using the Plant RNA Prep Kit (Biocubesystem, Korea). Reverse transcription polymerase chain (RT-PCR) was performed on total RNA using CABYV specific primers and protocols (Kwak et al. 2018). CABYV was detected in 17 of the 28 samples, while 11 symptomatic samples tested negative. In order to identify the cause of the symptoms, RT-PCR was performed using cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder virus (CYSDV) specific primers (Wintermantel et al. 2019). Eight of the 28 samples were positive using the CCYV specific primers while seven samples were infected with only CCYV and one contained a mixed infection of CABYV with CCYV. None of the samples tested positive for CYSDV. The expected 373 nt amplicons of CCYV were bi-directionally sequenced, and BLASTn analysis showed that the nucleotide sequences shared 98 to 100% identity with CCYV isolates from East Asia, including NC0180174 from Japan. Two pairs of primers for amplification of the complete coat protein and RNA-dependent RNA polymerase (RdRp) genes (Wintermantel et al., 2019) were used to amplify the 753bp coat protein and 1517bp RdRp genes, respectively. Amplicons of the expected sizes were obtained from a CCYV single infection and ligated into the pGEM T- Easy vector (Promega, WI, USA). Three clones from each amplicon were sequenced and aligned using Geneious Prime and found to have identical sequences (Genbank accession nos. MW033300, MW033301). The CP and RdRp sequences demonstrated 99% nucleotide and 100% amino acid identity with the respective genes and proteins of the CCYV isolates from Japan. This study documents the first report of CCYV in Korea. Since CCYV was first detected on melon in Japan, it has been reported in many other countries including those in East Asia, the Middle East, Southern Europe, North Africa, and recently in North America. CCYV has the potential to become a serious threat to production of cucurbit crops in Korea, particularly due to the increasing prevalence of the whitefly, Bemisia tabaci, in greenhouse production systems. It will be important to continue monitoring for CCYV and determine potential alternate hosts in the region to manage and prevent further spread of CCYV in Korea.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1168-1168 ◽  
Author(s):  
L.-H. Huang ◽  
H.-H. Tseng ◽  
J.-T. Li ◽  
T.-C. Chen

In April 2009, chlorosis, yellows, and bleaching accompanied with green veins and brittleness on the lower leaves of cantaloupe (Cucumis melo L.) were observed in Lunbei Township, Yunlin County, Taiwan. The same symptoms were also found on cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duchesne), watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai), bottle gourd (Lagenaria siceraria (Molina) Standl.), and oriental pickling melon planted in other areas of Yunlin and Changhua counties in central Taiwan. Large populations of whiteflies were observed in association with the diseased cucurbit crops, and they were further identified as silverleaf whitefly (Bemisia argentifolii Bellows & Perring) by PCR with specific primers BaBF (5′-CCACTATAATTATTGCTGTTCCCACA-3′) and l2-N-3014R (5′-TCCAATGCACTAATCTGCCATATTA-3′) (3). In June 2009, samples from symptomatic cantaloupe were collected for virus diagnosis. Flexuous filamentous virions of 700 to 900 nm were observed in crude sap of the symptomatic cantaloupe tissues with transmission electron microscopy. On the basis of the suspected insect vector, symptomology, and virus morphology, a Crinivirus species was suspected as the causal agent. A nested reverse transcription (RT)-PCR assay with degenerate deoxyinosine-containing primers developed for detection of Closterovirus and Crinivirus (1) was conducted. Total RNAs extracted from 16 symptomatic cantaloupe samples with a Plant Total RNA Miniprep Purification Kit (Hopegen, Taichung, Taiwan) were analyzed, and a 0.5-kb DNA fragment was amplified from eight of them. The PCR products were sequenced and the sequences were identical among samples. A comparison of the submitted sequence (Accession No. HM120250) with those in GenBank showed that the sequence was identical to the Hsp70h sequences of Cucurbit chlorotic yellows virus (CCYV) isolates from Japan (Accession No. AB523789) (4) and China (Accession Nos. GU721105, GU721108, and GU721110). To identify CCYV infection in the field, the specific primers, Crini-hsp70-f (5′-GCCATAACCATTACGGGAGA-3′) and Crini-hsp70-r (5′-CGCAGTGAAAAACCCAAACT-3′), that amplify a 389-bp DNA fragment corresponding to the nucleotide 1,324 to 1,712 of RNA2 of the original CCYV Japan isolate (Accession No. AB523789) were designed for detection of CCYV. In RT-PCR analyses, CCYV was identified in cantaloupe (305 of 599 samples), watermelon (27 of 93 samples), cucumber (all 15 samples), melon (82 of 92 samples), pumpkin (8 of 10 samples), and bottle gourd (10 of 17 samples) showing chlorosis and yellowing. The 389-bp DNA fragment was also amplified by RT-PCR with the primer pair Crini-hsp70-f/Crini-hsp70-r from total RNA extracts of 29 of 116 silverleaf whitefly individuals collected from the diseased cantaloupe fields in Lunbei Township from August to October, 2009. CCYV is a newly characterized Crinivirus species, first discovered in Japan in 2004 (2) and also found in China in 2009. To our knowledge, this is the first report that CCYV is emerging as a threat to cucurbit productions in Taiwan. References: (1) C. I. Dovas and N. I. Katis. J. Virol. Methods 109:217, 2003. (2) Y. Gyoutoku et al. Jpn. J. Phytopathol. 75:109, 2009. (3) C. C. Ko et al. J. Appl. Entomol. 131:542, 2007. (4) M. Okuda et al. Phytopathology 100:560, 2010.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 834-834 ◽  
Author(s):  
W. A. Myrie ◽  
L. Paulraj ◽  
M. Dollet ◽  
D. Wray ◽  
B. O. Been ◽  
...  

Coconuts (Cocos nucifera) are an important small-holder's crop in many tropical countries and are used to enhance esthetics of coastal areas. Lethal yellowing (LY) is the single most important plant disease affecting the coconut industry in Jamaica. It affects many palm species in Jamaica, Florida, and Guatemala. This coconut disease was first recorded in Grand Cayman Island in 1834 and Jamaica in 1884. Symptoms of LY disease include premature nut fall, necrosis of the inflorescence, yellowing of the leaves, and defoliation. Thirty-eight coconut palms displaying symptoms indicative of LY disease were sampled in April, 2005 at several locations in Nevis. Immature leaf tissues (leaf bases adjacent to the apical meristem) and nondestructive (boring with a bit and braces) samples were collected from disease and healthy control coconut trees. DNA was extracted (2). The first round of polymerase chain reaction (PCR) with phytoplasma universal primer pair P1/P7 (1,3) resulted in an rDNA fragment of 1.8 kb, and a subsequent nested PCR using LY16-23Sr/LY16Sf primers yielded an amplicon of 1.74 kb (4). Purified product was cloned for sequencing. Sequences obtained were analyzed with Vector NTI Software Suite. The sequence of LYN 18-3 was entered in Genbank and Accession No. DQ378279 was assigned. LYN 18-3 has approximately 99% homology with LY Phytoplasma U18747 from Florida (Manila palm [Veitchia merrillii]). The disease-associated phytoplasma was reliably detected in immature tissues and trunk phloem at the onset of foliar symptoms in palms by PCR. On the basis of the results obtained from this study, it is clear that LY phytoplasma (16SrIV group) was found in the samples collected from Nevis. To our knowledge, this is the first report on lethal yellowing disease in Nevis. References: (1) S. Deng and C. Hiruki. J. Microbiol. Methods 14:53 1991. (2) J. J. Doyle and J. L. Doyle. Focus 12:13, 1990. (3) N. A. Harrison et al. Ann. Appl. Biol. 141:183, 2002. (4) C. D. Smart et al. Appl. Environ. Microbiol. 62:2988, 1996.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaohui Sun ◽  
Ning Qiao ◽  
Xianping Zhang ◽  
Lianyi Zang ◽  
Dan Zhao ◽  
...  

Zucchini (Cucurbita pepo) is an extensively cultivated and important economic cucurbit crop in China. In September 2018 and 2019, interveinal chlorosis and yellowing symptoms, suspected to be caused by either tomato chlorosis virus (ToCV; genus Crinivirus) or cucurbit chlorotic yellows virus (CCYV; genus Crinivirus) or by their co-infection, were observed on zucchini plants in a greenhouse in Shandong Province, China. The incidence of the disease in the greenhouse was 20–30%. To identify the causal agent(s) of the disease, leaf samples from 66 zucchini plants were collected in 14 greenhouses in the cities of Shouguang (n = 12), Dezhou (n = 36), Qingzhou (n = 12), and Zibo (n = 6) in Shandong. Four whitefly (Bemisia tabaci) samples and four symptomatic tomato samples were also collected from these sampling sites (one each for each site) because numerous whiteflies were observed in the sampling greenhouses and ToCV was previously reported in greenhouse tomato plants from these regions (Zhao et al. 2014). To determine whether the symptoms were associated with Crinivirus infection, reverse transcription polymerase chain reaction (RT-PCR) using Crinivirus-specific degenerate primers (CriniRdRp251F/CriniRdRp995R) (Wintermantel and Hladky 2010) was performed first on total RNA extracted using the TRIzol protocol (Jordon-Thaden et al. 2015). Thereafter, the RNA samples were subjected to RT-PCR with ToCV- or CCYV-specific primers (Sun et al. 2016; Gan et al. 2019). Of the 66 zucchini samples, 54 tested positive by the degenerate crinivirus primer pair; and among them, 10 tested positive for ToCV only, 40 positive for CCYV only, and 4 positive for both viruses. Interestingly, while both viruses were detected in all B. tabaci samples, only ToCV was detected in the tomato samples (n = 4). To confirm the identity of the viruses, the amplicons of ToCV (four samples each of tomato, B. tabaci and zucchini) and CCYV (four samples each of B. tabaci and zucchini) were Sanger sequenced (Tsingke Biotechnology Co., Ltd., Beijing, China) after cloning into pMD18-T vectors (Takara, Shiga, Japan). BLASTn analysis demonstrated that all sequences were identical to their respective amplicons. The ToCV sequences (GenBank accession numbers: tomato, MN944406; B. tabaci, MN944404; zucchini, MN944405) shared 100% sequence identity with isolates from Beijing (KT751008, KC887999, KR184675, and KP335046), Hebei (KP217196), and Shandong (KX900412). The CCYV sequence (GenBank accession number MT396249) shared 99.9% sequence identity with isolates China (JN126046, JQ904629, KP896506, KX118632, KY400633, and MK568545), Greece (LT716000, LT716001, LT716002, LT716005, and LT716006), and Cyprus (LT992909, LT992910, and LT992911). To assess the transmissibility of ToCV and CCYV, virus-free B. tabaci (n = 30) were placed in ToCV or CCYV-infected zucchini plants for one day for virus acquisition. Thereafter, the whiteflies were transferred into virus-free zucchini seedlings (cv. ‘Zaoqingyidai’, 4-leaf-stage, n = 6 for each of the control, ToCV and CCYV treatment) for one day. Three weeks after inoculation, all plants that were inoculated with either ToCV or CCYV displayed same symptoms as those observed in the greenhouses, whereas plants in the control group remained symptom free. RT-PCR analysis using ToCV- and CCYV-specific primers confirmed the infection of the plants with the respective virus, whereas control plants were free from the viruses. CCYV has been previously reported on zucchini in Algeria (Kheireddine et al. 2020), Iran (LR585225), and Cyprus (LT992910). To our knowledge, this is the first report of CCYV infection in zucchini in China, and moreover the first report of ToCV infection in zucchini in the world. Clearly, stringent management is needed to minimize the losses caused by these viruses in greenhouse operations in the region.


Sign in / Sign up

Export Citation Format

Share Document