scholarly journals First Report of Cucurbit chlorotic yellows virus Infecting Cucurbits in Taiwan

Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1168-1168 ◽  
Author(s):  
L.-H. Huang ◽  
H.-H. Tseng ◽  
J.-T. Li ◽  
T.-C. Chen

In April 2009, chlorosis, yellows, and bleaching accompanied with green veins and brittleness on the lower leaves of cantaloupe (Cucumis melo L.) were observed in Lunbei Township, Yunlin County, Taiwan. The same symptoms were also found on cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duchesne), watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai), bottle gourd (Lagenaria siceraria (Molina) Standl.), and oriental pickling melon planted in other areas of Yunlin and Changhua counties in central Taiwan. Large populations of whiteflies were observed in association with the diseased cucurbit crops, and they were further identified as silverleaf whitefly (Bemisia argentifolii Bellows & Perring) by PCR with specific primers BaBF (5′-CCACTATAATTATTGCTGTTCCCACA-3′) and l2-N-3014R (5′-TCCAATGCACTAATCTGCCATATTA-3′) (3). In June 2009, samples from symptomatic cantaloupe were collected for virus diagnosis. Flexuous filamentous virions of 700 to 900 nm were observed in crude sap of the symptomatic cantaloupe tissues with transmission electron microscopy. On the basis of the suspected insect vector, symptomology, and virus morphology, a Crinivirus species was suspected as the causal agent. A nested reverse transcription (RT)-PCR assay with degenerate deoxyinosine-containing primers developed for detection of Closterovirus and Crinivirus (1) was conducted. Total RNAs extracted from 16 symptomatic cantaloupe samples with a Plant Total RNA Miniprep Purification Kit (Hopegen, Taichung, Taiwan) were analyzed, and a 0.5-kb DNA fragment was amplified from eight of them. The PCR products were sequenced and the sequences were identical among samples. A comparison of the submitted sequence (Accession No. HM120250) with those in GenBank showed that the sequence was identical to the Hsp70h sequences of Cucurbit chlorotic yellows virus (CCYV) isolates from Japan (Accession No. AB523789) (4) and China (Accession Nos. GU721105, GU721108, and GU721110). To identify CCYV infection in the field, the specific primers, Crini-hsp70-f (5′-GCCATAACCATTACGGGAGA-3′) and Crini-hsp70-r (5′-CGCAGTGAAAAACCCAAACT-3′), that amplify a 389-bp DNA fragment corresponding to the nucleotide 1,324 to 1,712 of RNA2 of the original CCYV Japan isolate (Accession No. AB523789) were designed for detection of CCYV. In RT-PCR analyses, CCYV was identified in cantaloupe (305 of 599 samples), watermelon (27 of 93 samples), cucumber (all 15 samples), melon (82 of 92 samples), pumpkin (8 of 10 samples), and bottle gourd (10 of 17 samples) showing chlorosis and yellowing. The 389-bp DNA fragment was also amplified by RT-PCR with the primer pair Crini-hsp70-f/Crini-hsp70-r from total RNA extracts of 29 of 116 silverleaf whitefly individuals collected from the diseased cantaloupe fields in Lunbei Township from August to October, 2009. CCYV is a newly characterized Crinivirus species, first discovered in Japan in 2004 (2) and also found in China in 2009. To our knowledge, this is the first report that CCYV is emerging as a threat to cucurbit productions in Taiwan. References: (1) C. I. Dovas and N. I. Katis. J. Virol. Methods 109:217, 2003. (2) Y. Gyoutoku et al. Jpn. J. Phytopathol. 75:109, 2009. (3) C. C. Ko et al. J. Appl. Entomol. 131:542, 2007. (4) M. Okuda et al. Phytopathology 100:560, 2010.

Plant Disease ◽  
2021 ◽  
Author(s):  
Hae-Ryun Kwak ◽  
Hui-Seong Byun ◽  
Hong-Soo Choi ◽  
Jong-Woo Han ◽  
Chang-Seok Kim ◽  
...  

In October 2018, cucumber plants showing yellowing and chlorotic mottle symptoms were observed in a greenhouse in Chungbuk, South Korea. The observed symptoms were similar to those caused by cucurbit aphid-borne yellows virus (CABYV), which has been detected on cucumber plants in the region since it was reported on melon in Korea in 2015 (Lee et al 2015). To identify the potential agents causing these symptoms, 28 samples from symptomatic leaves and fruit of cucumber plants were subjected to total RNA extraction using the Plant RNA Prep Kit (Biocubesystem, Korea). Reverse transcription polymerase chain (RT-PCR) was performed on total RNA using CABYV specific primers and protocols (Kwak et al. 2018). CABYV was detected in 17 of the 28 samples, while 11 symptomatic samples tested negative. In order to identify the cause of the symptoms, RT-PCR was performed using cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder virus (CYSDV) specific primers (Wintermantel et al. 2019). Eight of the 28 samples were positive using the CCYV specific primers while seven samples were infected with only CCYV and one contained a mixed infection of CABYV with CCYV. None of the samples tested positive for CYSDV. The expected 373 nt amplicons of CCYV were bi-directionally sequenced, and BLASTn analysis showed that the nucleotide sequences shared 98 to 100% identity with CCYV isolates from East Asia, including NC0180174 from Japan. Two pairs of primers for amplification of the complete coat protein and RNA-dependent RNA polymerase (RdRp) genes (Wintermantel et al., 2019) were used to amplify the 753bp coat protein and 1517bp RdRp genes, respectively. Amplicons of the expected sizes were obtained from a CCYV single infection and ligated into the pGEM T- Easy vector (Promega, WI, USA). Three clones from each amplicon were sequenced and aligned using Geneious Prime and found to have identical sequences (Genbank accession nos. MW033300, MW033301). The CP and RdRp sequences demonstrated 99% nucleotide and 100% amino acid identity with the respective genes and proteins of the CCYV isolates from Japan. This study documents the first report of CCYV in Korea. Since CCYV was first detected on melon in Japan, it has been reported in many other countries including those in East Asia, the Middle East, Southern Europe, North Africa, and recently in North America. CCYV has the potential to become a serious threat to production of cucurbit crops in Korea, particularly due to the increasing prevalence of the whitefly, Bemisia tabaci, in greenhouse production systems. It will be important to continue monitoring for CCYV and determine potential alternate hosts in the region to manage and prevent further spread of CCYV in Korea.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaohui Sun ◽  
Ning Qiao ◽  
Xianping Zhang ◽  
Lianyi Zang ◽  
Dan Zhao ◽  
...  

Zucchini (Cucurbita pepo) is an extensively cultivated and important economic cucurbit crop in China. In September 2018 and 2019, interveinal chlorosis and yellowing symptoms, suspected to be caused by either tomato chlorosis virus (ToCV; genus Crinivirus) or cucurbit chlorotic yellows virus (CCYV; genus Crinivirus) or by their co-infection, were observed on zucchini plants in a greenhouse in Shandong Province, China. The incidence of the disease in the greenhouse was 20–30%. To identify the causal agent(s) of the disease, leaf samples from 66 zucchini plants were collected in 14 greenhouses in the cities of Shouguang (n = 12), Dezhou (n = 36), Qingzhou (n = 12), and Zibo (n = 6) in Shandong. Four whitefly (Bemisia tabaci) samples and four symptomatic tomato samples were also collected from these sampling sites (one each for each site) because numerous whiteflies were observed in the sampling greenhouses and ToCV was previously reported in greenhouse tomato plants from these regions (Zhao et al. 2014). To determine whether the symptoms were associated with Crinivirus infection, reverse transcription polymerase chain reaction (RT-PCR) using Crinivirus-specific degenerate primers (CriniRdRp251F/CriniRdRp995R) (Wintermantel and Hladky 2010) was performed first on total RNA extracted using the TRIzol protocol (Jordon-Thaden et al. 2015). Thereafter, the RNA samples were subjected to RT-PCR with ToCV- or CCYV-specific primers (Sun et al. 2016; Gan et al. 2019). Of the 66 zucchini samples, 54 tested positive by the degenerate crinivirus primer pair; and among them, 10 tested positive for ToCV only, 40 positive for CCYV only, and 4 positive for both viruses. Interestingly, while both viruses were detected in all B. tabaci samples, only ToCV was detected in the tomato samples (n = 4). To confirm the identity of the viruses, the amplicons of ToCV (four samples each of tomato, B. tabaci and zucchini) and CCYV (four samples each of B. tabaci and zucchini) were Sanger sequenced (Tsingke Biotechnology Co., Ltd., Beijing, China) after cloning into pMD18-T vectors (Takara, Shiga, Japan). BLASTn analysis demonstrated that all sequences were identical to their respective amplicons. The ToCV sequences (GenBank accession numbers: tomato, MN944406; B. tabaci, MN944404; zucchini, MN944405) shared 100% sequence identity with isolates from Beijing (KT751008, KC887999, KR184675, and KP335046), Hebei (KP217196), and Shandong (KX900412). The CCYV sequence (GenBank accession number MT396249) shared 99.9% sequence identity with isolates China (JN126046, JQ904629, KP896506, KX118632, KY400633, and MK568545), Greece (LT716000, LT716001, LT716002, LT716005, and LT716006), and Cyprus (LT992909, LT992910, and LT992911). To assess the transmissibility of ToCV and CCYV, virus-free B. tabaci (n = 30) were placed in ToCV or CCYV-infected zucchini plants for one day for virus acquisition. Thereafter, the whiteflies were transferred into virus-free zucchini seedlings (cv. ‘Zaoqingyidai’, 4-leaf-stage, n = 6 for each of the control, ToCV and CCYV treatment) for one day. Three weeks after inoculation, all plants that were inoculated with either ToCV or CCYV displayed same symptoms as those observed in the greenhouses, whereas plants in the control group remained symptom free. RT-PCR analysis using ToCV- and CCYV-specific primers confirmed the infection of the plants with the respective virus, whereas control plants were free from the viruses. CCYV has been previously reported on zucchini in Algeria (Kheireddine et al. 2020), Iran (LR585225), and Cyprus (LT992910). To our knowledge, this is the first report of CCYV infection in zucchini in China, and moreover the first report of ToCV infection in zucchini in the world. Clearly, stringent management is needed to minimize the losses caused by these viruses in greenhouse operations in the region.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 593-593 ◽  
Author(s):  
D. M. S. Freitas ◽  
I. Nardin ◽  
N. Shimoyama ◽  
J. A. C. Souza-Dias ◽  
J. A. M. Rezende

Potato plants (Solanum tuberosum cv. Ágata) exhibiting symptoms of leaf roll and interveinal chlorosis, especially on older leaves, were found in a commercial crop in the County of Cristalina, State of Goiás, Brazil in June 2011. The crop was severely infested by whitefly Bemisia tabaci biotype B. Four potato tubers from symptomatic plants were indexed for the presence of the following viruses: Tomato chlorosis virus (ToCV), Potato leaf roll virus (PLRV), Tomato severe rugose virus (ToSRV), and Potato virus Y (PVY). Total RNA was extracted separately from each tuber and used for reverse transcription (RT)-PCR using the HS-11/HS-12 primer pair, which amplifies a fragment of 587 bp from the highly conserved region of the heat shock protein (HSP-70) homolog gene reported for ToCV. The RT-PCR product was subsequently tested by nested-PCR for detection of ToCV with specific primers ToC-5/ToC-6 (2). Amplicons of 463 bp, amplified from total RNA separately extracted from three tubers, were purified and directly sequenced. Comparisons among the three consensus sequences of 448 bp (GenBank Accession Nos. JQ288896, JQ288897, and JQ288898) revealed respectively, 98, 100, and 100% identity with the reported sequence of a tomato isolate of ToCV from Brazil (GenBank Accession No. EU868927) (1). For ToSRV detection, total DNA was extracted from two tubers and a fragment of approximately 820 bp was amplified by PCR with specific primers (3). PLRV and PVY were indexed in two and three tubers, respectively, by double-antibody sandwich-ELISA (SASA, Edinburg, Scotland). Virus-free B. tabaci biotype B were separately transferred to potato and tomato leaves infected with ToCV for an acquisition access period of 24 h. Groups of 30 viruliferous whitefly were transferred to four, young, sprout-grown potato plants cv. Ágata (two plants per virus isolate) for 24-h inoculation access period. After 37 days of inoculation, one plant inoculated with the potato and tomato isolates of ToCV, respectively exhibited symptoms of leaf roll and interveinal chlorosis on order leaves, which were similar to that induced by PLRV. Experimental infection of potato plants with ToCV, which induced leaf roll symptoms resembling PLRV infection, was reported in the United States by Wisler et al. (4). The potato isolate of ToCV was also transmitted by B. tabaci to one of two inoculated tomato plants. The presence of ToCV in all inoculated plants was detected by nested-RT-PCR as described above. To our knowledge, this is the first report on detection of ToCV in field potato plants in the world. Considering that ToCV occurs in innumerous countries around the world, it is transmitted by a cosmopolitan insect, and it induces symptoms similar to PLRV, this finding triggers an alert to field dependent seed-potato multiplication, virus inspector, and certification system. References: (1) J. C. Barbosa et al. Plant Dis. 92:1709, 2008. (2) C. I. Dovas et al. Plant Dis. 86:1345, 2002. (3) F. R. Fernandes et al. Trop. Plant Pathol. 35:43, 2010. (4) G. C. Wisler et al. Plant Dis. 82:270, 1998.


Plant Disease ◽  
2021 ◽  
Author(s):  
In Sook Cho ◽  
Tae-Bok Kim ◽  
Ju-Yeon Yoon ◽  
Bong Nam Chung ◽  
John Hammond ◽  
...  

In December 2018, virus-like symptoms (yellowing, vein clearing) were observed on 2% of muskmelon (Cucumis melo L.) plants in plastic houses on a farm in Gyeongsang province, Korea Total RNA from two symptomatic and two asymptomatic plants was extracted using RNeasy Plant Mini Kit (Qiagen, Germany) for high throughput sequencing (HTS). After pre-processing and Ribo-Zero rRNA removal, a cDNA library was prepared (Illumina TruSeq Stranded Total RNA kit) and sequenced (Illumina NovaSeq 6000 system: Macrogen Inc. Korea). De novo assembly of 88,222,684 HTS reads with Trinity software (r20140717) yielded 146,269 contigs of 201-28,442 bp, which were screened against the NCBI viral genome database by BLASTn. Contigs from cucumber mosaic virus (CMV), melon necrotic spot virus (MNSV), tobacco mosaic virus (TMV) and watermelon mosaic virus (WMV) were identified, all previously reported in Korea. Two contigs (8,539 and 8,040 bp) with 99.9% sequence identity to distinct cucurbit chlorotic yellows virus (CCYV) isolates (JN641883, RNA1, Taiwan; MH819191, RNA2, China) were also identified. The ten sequences most closely related to each RNA of the Korean isolate (≥99% coverage, ≥99.6% nt identity) were from Japan, China, Taiwan, or Israel. CCYV presence was confirmed by reverse transcription-PCR (RT-PCR) using newly designed specific primers, RdRp-F/RdRp-R (5’-ACCGAACACTTGGCTATCCAA-3’/5’-CTTAATGCCGCGTATGAACTCA-3’) span style="font-family:'Times New Roman'; letter-spacing:-0.5pt">and HSP-F/HSP-R (5’-TGAACGACACTGAGTTCATTCCTA-3’/5’-CGCCAAGATCGTACATGAGGAA-3’), against RNA dependent RNA polymerase (RdRp; RNA1) and the heat shock protein 70 homolog (HSP70h; RNA2). Symptomatic samples yielded products of expected sizes (RdRp,450 bp; HSP70h, 510 bp) while asymptomatic samples did not. The amplicons were cloned, and two clones of each were sequenced (BIONEER, Korea; GenBank acc. nos. LC592226 and LC592227) showing 100% and 99.2% nt identity with RdRp and HSP70h genes of Chinese CCYV isolate SD (MH819190 and MH819191, respectively) and other Asian isolates. Primers specific for CMV, WMV, beet pseudo-yellows virus (BPYV) (Okuda et al., 2007), TMV (Kim et al., 2018), MNSV (F/R, 5ʹ-ATCTCGCATTTGGCATTACTC-3ʹ/5ʹ-ATTTGTAGAGATGCCAACGTA-3ʹ), cucurbit yellow stunting disorder virus (CYSDV; Zeng et al., 2011) and cucurbit aphid-borne yellows virus (CABYV; F/R, 5ʹ-CGGTCTATTGTCTGCAGTACCA-3ʹ/5ʹ- GTAGAGGATCTTGAATTGGTCCTCA-3ʹ) were also used. None of these viruses were detected in the symptomatic samples, but both asymptomatic plants were positive for CMV and WMV, and one also for MNSV. In June and September 2020, muskmelon and oriental melon (Cucumis melo L. var. makuwa) plants with yellowing disease (incidence 80-90%) and whiteflies were observed in all investigated plastic houses of one muskmelon and one oriental melon farm in Gyeonggi and Jeolla provinces. Symptomatic samples (14 muskmelon; 6 oriental melon) were collected and RT-PCR tested as above; 19/20 samples were positive for CCYV, but none for the other viruses. The oriental melon sequence (LC592895, LC592230) showed 99.7% and 100% nt identity with the RdRp and HSP70h genes of Chinese isolate SD, respectively. CCYV was first reported in Japan (Okuda et al., 2010), Taiwan, and China (Huang et al., 2010; Gu et al., 2011); to our knowledge, this is the first report of CCYV infecting muskmelon and oriental melon in Korea. Whitefly-transmitted CCYV could present a serious threat of yield losses to cucurbit crops in Korea, requiring control of vector populations to prevent spread of CCYV.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1446-1446 ◽  
Author(s):  
C. Orfanidou ◽  
V. I. Maliogka ◽  
N. I. Katis

In 2011, an outbreak of a yellowing disease causing chlorosis and Interveinal chlorotic spots on lower leaves was observed in cucumber (Cucumis sativus) and melon (C. melo) plants in two greenhouses on the island of Rhodes, Greece. Similar symptoms were observed in 2012 in open field watermelon (Citrullus lanatus) plants in Rhodes and in November 2013 in a cucumber greenhouse in Tympaki, Crete. Disease incidence ranged from 10 to 40%. The observed symptoms were similar to those caused by whitefly transmitted criniviruses (family Closteroviridae) Cucurbit yellow stunting disorder virus (CYSDV) and Beet pseudo-yellows virus (BPYV), as well as Cucurbit chlorotic yellows virus (CCYV), a recently described crinivirus that infects cucurbits in Japan (4) and by the aphid transmitted polerovirus (family Luteoviridae) Cucurbit aphid-borne yellows virus (CABYV). Dense populations of whiteflies were present in all the affected crops. Leaf samples from cucumber (10 from Rhodes and 10 from Crete), melon (10), and watermelon (10) were collected and tested for the presence of the above viruses. Total RNA was extracted from the samples (2) and detection of BPYV, CYSDV, and CABYV was done as previously described (1,3) whereas detection of CCYV was conducted by herein developed two-step RT-PCR assays. Two new pairs of primers, ‘CC-HSP-up’ (5′-GAAGAGATGGGTTGGTGTAGATAAA-3′)/‘CC-HSP-do’ (5′-CACACCGATTTCATAAACATCCTTT-3′) and ‘CC-RdRp-up’ (5′-CCTAATATTGGAGCTTATGAGTACA-3′)/‘CC-RdRp-do’ (5′-CATACACTTTAAACACAACCCC-3′) were designed based on GenBank deposited sequences of CCYV for the amplification of two regions partially covering the heat shock protein 70 homologue (HSP70h) (226 bp) and the RNA dependent RNA polymerase (RdRp) genes (709 bp). Interestingly, CCYV was detected in all samples tested, while CYSDV was detected in 18 cucumbers (10 from Rhodes and 8 from Crete), 1 melon, and 3 watermelon plants. Neither BPYV nor CABYV were detected. In order to verify the presence of CCYV, the partial HSP70h and RdRp regions of a cucumber isolate from Crete were directly sequenced using the primers ‘CC-HSP-up’/‘CC-HSP-do’ and ‘CC-RdRp-up’/‘CC-RdRp-do’. BLAST analysis of the obtained sequences (HG939521 and 22) showed 99% and 100% identities with the HSP70h and RdRp of cucumber CCYV isolates from Lebanon, respectively (KC990511 and 22). Also, the partial HSP70h sequence of a watermelon CCYV isolate from Rhodes showed 99% identity with the cucumber isolate from Crete. Whitefly transmission of CCYV was also carried out by using an infected cucumber from Crete as virus source. Four groups of 30 whitefly adults of Bemisia tabaci biotype Q were given an acquisition and inoculation access time of 48 and 72 h, respectively. Each whitefly group was transferred to a healthy cucumber plant (hybrid Galeon). Two weeks post inoculation, the plants, which have already been showing mild interveinal chlorosis, were tested for virus presence by RT-PCR. CCYV was successfully transmitted in three of four inoculated cucumbers, which was further confirmed by sequencing. In Greece, cucurbit yellowing disease has occurred since the 1990s, with CYSDV, BPYV, and CABYV as causal agents. To our knowledge, this is the first report of CCYV infecting cucurbits in Greece; therefore, our finding supports the notion that the virus is spreading in the Mediterranean basin and is an important pathogen in cucurbit crops. References: (1) I. N. Boubourakas et al. Plant Pathol. 55:276, 2006. (2) E. Chatzinasiou et al. J. Virol. Methods 169:305, 2010. (3) L. Lotos et al. J. Virol. Methods 198:1, 2014. (4) M. Okuda et al. Phytopathology 100:560, 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ashwini Kumar ◽  
Bichhinna Maitri Rout ◽  
Shakshi Choudhary ◽  
Amish K. Sureja ◽  
V. K. Baranwal ◽  
...  

Pumpkin (Cucurbita moschata), a member of the family Cucurbitaceae, is widely cultivated throughout the world including India. During August 2020 to January 2021, stunted pumpkin plants (cv. Pusa Vishwas), showing chlorotic patches, mosaic, and vein banding on leaves (e-Xtra Fig.1), were observed in the experimental fields of the Indian Agricultural Research Institute (IARI), New Delhi, India. Leaf-dip electron microscopy (EM) of the symptomatic plants (12 out of 37 samples) revealed the association of long flexuous virus particles measuring 650-950nm×10-12nm, suggestive of the presence of either crinivirus or potyvirus or both. Subsequently, a reverse transcription-polymerase chain reaction (RT-PCR) was performed on RNA extracted from the samples that had long flexuous virus particles using generic primers for criniviruses i.e. CriniPol-F: GCY CCS AGR GTK AAT GA and CriniPol-R: ACC TTG RGA YTT RTC AAA targeting partial RNA-dependent RNA polymerase coding region (Martin et al. 2003) and specific primers for papaya ringspot virus (PRSV) targeting a part of 3’ NIb and full coat protein (CP) gene (Basavaraj et al., 2019) separately. All tested samples were positive for both crinivirus and PRSV as expected size amplicons were obtained, accounting for about 32% prevalence. As PRSV is a well-studied virus infecting cucurbits, further work was not carried on this virus and only the RT-PCR amplicon indicative of crinivirus (~515 bp) was cloned into the pGEM-T easy cloning vector (Promega, Madison, WI) and sequenced for further confirmation of the virus presence. The obtained sequence (GenBank accession No MZ318672) shared up to 90% nucleotide and 100% amino acid sequence identity with the corresponding genomic region of a cucurbit chlorotic yellows virus (CCYV) isolate from Greece (LT841297). To confirm the identity of the crinivirus species present in the same pumpkin sample, the CP gene (753bp) was amplified and sequenced using CCYV CP gene-specific primers CP-F (5’-ATG GAG AAG ACY GAC AAT AAA CAA AAT GAT GA-3’) and CP-R (5’-TTA TTT ACT ACA ACC TCC CGG TGC CAA C-3’) (modified from Kheireddine et al. 2020). Sequence analysis using the BioEdit tool (version 2.0) revealed that the crinivirus present in pumpkin (KC577202) shared 95 to 100% nucleotide (and 98 to 100% amino acid) sequence identity with the corresponding gene sequences of CCYV isolates originating from cucurbitaceous hosts from diverse locations. The presence of CCYV was further validated by a whitefly transmission-based bioassay followed by RT-PCR confirmation. The bioassay was performed by the whitefly species Bemisia tabaci (biotype Asia II7) using the acquisition access period and inoculation access period of 24 hours each. Six whitefly individuals per plant were used for inoculating ten pumpkin plants (cv. Pusa Vishwas) at the first true leaf stage grown in pots containing soilrite as the medium in insect-proof cages. All ten plants inoculated using whiteflies exhibited chlorosis and stunting symptoms 12-15 days post-inoculation (e-Xtra Fig.2) and were found positive for CCYV in RT-PCR assay performed using CCYV CP gene-specific primers. Though CCYV had been reported worldwide (Tzanetakis et al. 2013), its occurrence had not been reported from India. Results of the present study confirm the infection of pumpkin plants by CCYV and constitute the first report of its presence in India. Further, there is a need to investigate the extent of its spread and impact of this virus on the production of cucurbitaceous crops in the country.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1706-1706 ◽  
Author(s):  
K. Milojević ◽  
I. Stanković ◽  
A. Vučurović ◽  
D. Ristić ◽  
D. Nikolić ◽  
...  

In June 2012, field-grown watermelon plants (Citrullus lanatus L.) with virus-like symptoms were observed in Silbaš locality, South Backa District of Serbia. Plants infected early in the growing season showed severe symptoms including stunting, mosaic, mottling, blistering, and leaf curling with reduced leaf size, while those infected at later stages exhibited only a mild mosaic. Affected plants were spread across the field and disease incidence was estimated at 40%. Thirteen symptomatic watermelon plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using a commercial diagnostic kit (Bioreba AG, Reinach, Switzerland) against the most important watermelon viruses: Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), Papaya ringspot virus (PRSV), and Squash mosaic virus (SqMV) (1). Commercial positive and negative controls and an extract from healthy watermelon tissue were included in each ELISA. Serological analyses showed that all plants were positive for CMV and negative for ZYMV, WMV, PRSV, and SqMV. The virus was mechanically transmitted from an ELISA-positive sample (449-12) to five plants of each Citrullus lanatus ‘Creamson sweet’ and Chenopodium amaranticolor using 0.01 M phosphate buffer (pH 7) with Serbian CMV isolate from Cucurbita pepo ‘Olinka’ (GenBank Accession No. HM065510) and healthy watermelon plants as positive and negative controls, respectively. Small necrotic lesions on C. amaranticolor and mild mosaic with dark green vein banding on watermelon leaves were observed on all inoculated plants 5 and 14 days post-inoculation, respectively. For further confirmation of CMV infection, reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen, Hilden, Germany) using specific primers CMVCPfwd (5′-TGCTTCTCCRCGARWTTGCGT-3′) and CMVCPrev (5′-CGTAGCTGGATGGACAACCCG-3′), designed to amplify an 871-bp fragment of the RNA3 including the whole CP gene. Total RNA from 12 naturally infected and five mechanically infected watermelon plants was extracted with the RNease Plant Mini Kit (Qiagen). Total RNA obtained from the Serbian CMV isolate (HM065510) and healthy watermelon plants were used as positive and negative controls, respectively. The expected size of RT-PCR products were amplified from all naturally and mechanically infected watermelon plants but not from healthy tissues. The PCR product derived from isolate 449-12 was purified and directly sequenced using the same primer pair as in RT-PCR (JX280942) and analyzed by MEGA5 software (3). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 449-12 shared the highest nucleotide identity of 98.9% (99.1% amino acid identity) with the Spanish melon isolate (AJ829777) and Syrian tomato isolate (AB448696). To our knowledge, this is the first report of CMV on watermelon in Serbia. CMV is widely distributed within the Mediterranean basin where it has a substantial impact on many agricultural crops (2) and is often found to be prevalent during pumpkin and squash surveys in Serbia (4). The presence of CMV on watermelon could therefore represent a serious threat to this valuable crop in Serbia. References: (1) L. M. da Silveira et al. Trop. Plant Pathol. 34:123, 2009. (2) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (3) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (4) A. Vucurovic et al. Eur. J. Plant Pathol. 133:935, 2012.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ziad M Hasan ◽  
Nidà Mohammed Salem ◽  
Imad D. Ismail ◽  
Insaf Akel ◽  
Ahmad Y Ahmad

Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. In spring and autumn 2017, virus-like symptoms were observed on greenhouse grown tomato plants in the east of Akkar plain (south of coastal region, Tartous governorate, Syria). These symptoms were: mild to severe mosaic on the apical leaves, brown necrosis on sepals, receptacle and flower’s cluster carrier, and severe symptoms of brown rugose and discoloration on fruit. During next growing seasons, disease spread was observed in most of Syrian coastal region with disease incidence ranged from 40% to 70% by 2020. Tomato brown rugose fruit virus (ToBRFV) was suspected as a main causal agent of the disease, especially since its first report in Jordan, a neighboring country (Salem et al. 2016), Palestine (Alkowni et al. 2019), Turkey (Fidan et al. 2019), Germany (Menzel et al. 2019), Italy (Panno et al. 2019), America (Camacho-Beltrán et al. 2019), Egypt (Amer and Mahmoud, 2020), and recently in Spain (Alfaro-Fernandez et al. 2021). In November and December 2020, seventy-one leaf samples from symptomatic plants (59 from Tartous and 12 from Lattakia governorates) and seven from asymptomatic ones (5 from Tartous and 2 from Lattakia) were collected and tested for the presence of ToBRFV by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), using ToBRFV-commercial kit (LOEWE® Biochemia, Germany) following the manufacturer’s instructions. Results showed, forty-three of symptomatic samples reacted positively (38 in Tartous and 5 in Lattakia) and none of asymptomatic ones. On the other hand, sap mechanical inoculation of 10 tomato cv. Mandaloun F1 (Enza Zaden, the Netherlands) plants using a positive tomato isolate gave systemic mosaic symptoms in all plants identical to those observed in the original plants in the field, after 13 days of inoculation, and necrotic local lesions on 10 plants of Nicotiana tabacum after 5 days, indicating the presence of a tobamovirus in general. ToBRFV infection was confirmed in all mechanically-inoculated plants by DAS-ELISA. Further tests were necessary to investigate ToBRFV presence, because of its serological relationships with another tobamoviruses. Six representative symptomatic samples (ELISA-positive) and two asymptomatic (ELISA-negative) samples were subjected to total RNA extraction using the SV-Total RNA Extraction kit (Promega, U.S.A.) following the manufacturer’s instructions. The samples were tested by two-step reverse transcription-polymerase chain reaction (RT-PCR) using species-specific primers and protocols for most common tomato-infecting viruses, including: tomato chlorosis virus and tomato infectious chlorosis virus (Dovas et al. 2002), pepino mosaic virus (PepMV) and tomato torrado virus (Wieczorek et al. 2013), alfalfa mosaic virus (Parrella et al. 2000), tomato spotted wilt virus (Salem et al. 2012) and a pair of primers: ToBRFV-F2 (5’-CATATCTCTCGACACCAGTAAAAGGACCCG-3’) and ToBRFV-R2 (5’-TCCGAGTATAGGAAGACTCTGGTTGGTC-3’) targeting a region of the RNA dependent RNA polymerase (RdRp), of the ToBRFV genome (KT383474; Salem et al. 2016). First-strand cDNA synthesis was carried out using Moloney murine leukemia virus reverse transcriptase (M-MLV RT; Promega) and random primer according to the manufacturer's protocol, then followed by PCR with the seven species-specific primers. Only ToBRFV was detected among all tested viruses in symptomatic samples (ELISA-positive), and none of the tested viruses was detected in the asymptomatic plants. To confirm the presence of ToBRFV, two selected RdRp-specific PCR amplicons (872 bp) were purified and ligated into pGEM T-Easy Vector (Promega), and three clones were sequenced (GenBank accession nos. MZ447794 to 96). BLASTn analysis showed that the nucleotide sequences are 99.77-100% identical and shared around 99% identity to RdRp of ToBRFV isolate (MT118666) from Turkey available in the GenBank. Accordingly, the presence of ToBRFV was confirmed by bioassays on indicator plants, DAS-ELISA, RT-PCR, and further sequencing. To our knowledge, this is the first report of ToBRFV infecting tomato in Syria, and this requires special emphasis for further investigations because of the virus severity, easy transmission ability and absent of commercial resistance varieties till now.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1450-1450 ◽  
Author(s):  
D. P. Di ◽  
Y. L. Zhang ◽  
C. Yan ◽  
T. Yan ◽  
A. H. Zhang ◽  
...  

In the spring of 2014, a survey of viral diseases on wheat (Triticum aestivum L.) was carried out in Hebei Province, China. The samples with virus-like symptoms of dwarfing and flag leaf yellowing were collected in Zhaoxian, Quyang, Anxin, and Luannan. To reproduce the viral symptoms and confirm whether the unknown virus was transmitted by insect vectors, the nymphs of aviruliferous planthopper (Laodelphax striatellus Fallen, Homoptera: Delphacidae) were transferred onto diseased wheat from the field for a 3-day acquisition access period and a 10-day incubation on fresh wheat seedlings, and then were exposed to 2- to 3-leaf stage wheat seedlings of wheat variety Shixin828 for a 3-day inoculation access period. The infected wheat plants developed mosaic symptoms on the young leaves at 7 days post inoculation (dpi), and followed with severe symptoms including stunting, chlorotic spots, and striation along the veins of leaves at around 14 dpi. The infection symptoms were same as in the field but distinct from wheat infected with Rice black streaked dwarf virus (RBSDV) or Northern cereal mosaic virus (NCMV). For further confirmation, total RNA was extracted from the symptomatic wheat leaves, and NCMV specific primers, NCMV-PF/NCMV-PR (5′-ATGGATAAGAAAGCAAGTGGA-3′/5′-TTAAAAGTCGGCATACGGGTC-3′) and RBSDV specific primers, S10-F/S10-R (5′-TTACCCAACATCACGCAACT-3′/5′-GAGCAGGAACTTCACGACAAC-3′) were used for amplification of sequences of phosphoprotein and coat protein genes, respectively. Neither RBSDV nor NCMV were present in the symptomatic tissue according to the RT-PCR assay (4). Tissues derived from symptomatic wheat leaves were fixed and embedded in Spurr's resin and used for ultra-thin sectioning and transmission electron microscopy observations, revealing large amounts of Rhabdovirus-like particles in the cytoplasm. The identified particles were about 315 to 353 × 46 to 57 nm, similar in size to Barley yellow striate mosaic virus (BYSMV), a member of the genus Cytorhabdovirus reported from Italy (2). The specific primer pair (5′-ACTAAGGGGGTACTCCGACC-3′ and 5′-CTGATCTGCTTTGAGGGGCA-3′) was designed based on the reported polymerase (L) gene sequence of BYSMV isolate Zanjan-1 (GenBank Accession No. FJ665628) (1), and used for the BYSMV detection by RT-PCR. A single bright band of the expected size (~500 bp) was obtained from total RNA extracted from the plants exhibiting symptoms in the greenhouse. No such band was amplified from asymptomatic plants, while 15 out of 23 field samples also produced the same 500-bp products in RT-PCR. PCR products from three virus-positive field samples were sequenced directly and the sequences were submitted to GenBank (KM052176, KM052177, and KM052178). BLAST search showed that the sequences shared 96 to 97% nucleotide identity with the polymerase L gene sequence of BYSMV isolate Zanjan-1, whereas only 73 to 75% identity with NCMV (AB030277 and GU985153) (1,3,5). To our knowledge, this is the first report of BYSMV occurrence on wheat in China. References: (1) R. Almasi et al. J. Phytopathol. 158:351, 2010. (2) A. Appiano et al. Cytol. 6:105, 1974. (3) H. C. Chen et al. Sci. Agric. Sinica 3:64, 1980. (4) X. F. Duan et al. Acta Phytopathol. Sinica 40:337, 2010. (5) F. Tanno et al. Arch. Virol. 145:1373, 2000.


Plant Disease ◽  
2021 ◽  
Author(s):  
Robert Chynoweth ◽  
Daniel Jimenez ◽  
Daniele Liberti ◽  
Daniel Bellon-Dona ◽  
Alejandro Carralero ◽  
...  

During the winter 2018, symptoms of leaf chlorotic spots (Figure 1) followed by symptoms of leaf interveinal chlorosis (Figure 2) and severe chlorosis in basal leaves were observed in cucumber cv Laredo (Cucumis sativus) plants in three separated greenhouses, sited in distinct locations in southern Spain. In all cases, Bemisia tabaci populations were observed on infected plants. The symptomology observed was similar to that caused by whitefly transmitted Cucurbit yellow stunting disorder virus (CYSDV, genus Crinivirus, family Closteroviridae), which is usually found infecting cucumber plants in this geographical area (1). Samples from four different cucumber plants of distinct greenhouses were collected and tested for the presence of CYSDV. Total RNA was extracted from the samples using the NucleoSpin RNA Plant kit (Macherey-Nagel, Germany). Molecular detection of CYSDV was performed using the multiplex and degenerate primer RT-PCR method (2), specific to the region of the highly conserved RNA-dependent RNA polymerase (RdRp) gene of criniviruses, which also detects other criniviruses such as Lettuce infectious yellows virus (LIYV) and Beet pseudo-yellows virus (BPYV). Results indicated that the viral species CYSDV, LIYV and BPYV were not detected in the four cucurbit plant samples. In 2004, an emergent crinivirus (Cucurbit chlorotic yellows virus, CCYV), inducing symptoms similar to those caused by CYSDV, was described infecting cucurbits in Japan (3). Recently, CCYV was detected in 2011 in Greece (4) and in 2014 in Egypt (5) and Saudi Arabia (6). Therefore, the four RNA samples were tested for the presence of the CCYV by a RT-PCR method previously described (7). Specific primers were designed to amplify 336 nt of the capsid protein (CP) gene and 680 nt of the RdRp gene, located on CCYV genomic RNA 1 and RNA 2, respectively. In all cases, clear cDNA bands of both expected sizes were detected for each cucumber sample that were then purified and sequenced via Sanger technology. BLAST analysis of those sequences showed 99% identity with the nucleotide sequence of the CP and RpRd genes from the CCYV isolates from Greece (LT992911, LT992910), China (KY400633.1, KX118632) and Taiwan (JF502222). To our knowledge, this is the first report of CCYV infecting cucurbits in Spain. Probably CCYV has been spread throughout the Mediterranean basin, remaining undetected due to the yellowing symptom similarities between CYSDV and CCYV. Detection of the emergent virus CCYV in Spain represents a new threat for the horticultural area of southern Europe.


Sign in / Sign up

Export Citation Format

Share Document