scholarly journals Effects of Crop Management Practices on Current-Season Spread of Potato virus Y

Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Tyler D. B. MacKenzie ◽  
Manphool S. Fageria ◽  
Xianzhou Nie ◽  
Mathuresh Singh

The current-season spread of Potato virus Y (PVY) was monitored in 19 fields under various management practices in New Brunswick, Canada, through the 2011 and 2012 growing seasons. The focus of this study was to evaluate the role of seedborne PVY inoculum, aphid vector abundance, and the numbers, timing, and types of insecticide and mineral oil sprays, and to confirm the reliability and forecasting capacity of midseason PVY testing. In each field, 100 to 110 virus-free plants were identified shortly after emergence and were assessed four times from early July to early September (after top-kill) with enzyme-linked immunosorbent assay (ELISA) and reverse-transcription polymerase chain reaction (RT-PCR) to track PVY spread. In addition, tubers harvested during development in August and after top-kill were grown-out in the greenhouse for ELISA testing. PVY spread to selected virus-free plants varied widely, ranging from 0 to 76.2% across all studied fields. Of the 19 fields over two seasons, 10 fields were planted with no detectable seedborne PVY, and they showed 0 to 8.7% (mean 2.9%) PVY spread by harvest. The remaining nine study fields with 0.9 to 5.8% seedborne PVY showed 1 to 76.2% (mean 15.2%) PVY spread by harvest. PVY spread was detected in most fields during midseason testing with ELISA and RT-PCR; all tests correlated well with final PVY rates after top-kill, though RT-PCR detection in developing tubers was most sensitive and correlated. Logistic regression modeling was used to identify major factors in PVY spread, including seedborne PVY, early-season aphid abundance, and the numbers of insecticide and mineral oil sprays. The best-fitting model, constructed using these factors as well as a measurement of July PVY incidence (ELISAJuly), strongly explained PVY spread by harvest, with the most significant management factor being the number of mineral oil sprays supplemented with insecticide used during the growing season. A similar model fitted without the ELISAJuly did not adequately predict ultimate PVY spread. The analysis suggests that mineral oil alone was effective at lowering PVY spread, and more effective when combined with insecticide, particularly when used early in the season. No evidence was found for differences in PVY spread across the eight cultivars used or across the range of mineral oil application rates, whereas some evidence was found for differences in the effectiveness of different insecticide types.

Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 641-644 ◽  
Author(s):  
Manphool S. Fageria ◽  
Mathuresh Singh ◽  
Upeksha Nanayakkara ◽  
Yvan Pelletier ◽  
Xianzhou Nie ◽  
...  

The current-season spread of Potato virus Y (PVY) was investigated in New Brunswick, Canada, in 11 potato fields planted with six different cultivars in 2009 and 2010. In all, 100 plants selected from each field were monitored for current-season PVY infections using enzyme-linked immunosorbent assay (ELISA) and real-time reverse-transcription polymerase chain reaction (RT-PCR) assay. Average PVY incidence in fields increased from 0.6% in 2009 and 2% in 2010 in the leaves to 20.3% in 2009 and 21.9% in 2010 in the tubers at the time of harvest. In individual fields, PVY incidence in tubers reached as high as 37% in 2009 and 39% in 2010 at the time of harvest. Real-time RT-PCR assay detected more samples with PVY from leaves than did ELISA. A higher number of positive samples was also detected with real-time RT-PCR from growing tubers compared with the leaves collected from the same plant at the same sampling time. PVY incidence determined from the growing tubers showed a significant positive correlation with the PVY incidence of tubers after harvest. Preharvest testing provides another option to growers to either top-kill the crop immediately to secure the seed market when the PVY incidence is low or leave the tubers to develop further for table or processing purposes when incidence of PVY is high.


Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3110-3114
Author(s):  
Mariana Rodriguez-Rodriguez ◽  
Mohamad Chikh-Ali ◽  
Steven B. Johnson ◽  
Stewart M. Gray ◽  
Nellie Malseed ◽  
...  

Potato virus Y (PVY) is one of the main viruses affecting potato in Australia. However, molecular characterization of PVY isolates circulating in potato in different states of Australia has not yet been thoroughly conducted. Only nonrecombinant isolates of three biological PVY strains collected from potato were reported previously from Western Australia and one from Queensland. Here, PVY isolates collected from seed potato originating in Victoria, Australia, and printed on FTA cards, were subjected to strain typing by RT-PCR, with three isolates subjected to whole genome sequencing. All the 59 PVY isolates detected during two growing seasons were identified to be recombinants based on two RT-PCR assays. No nonrecombinant PVY isolates were identified. All the RT-PCR typed isolates belonged to the PVYNTN strain. Sequence analysis of the whole genomes of three isolates suggested a single introduction of the PVYNTN strain to Australia but provided no clues as to where this introduction originated. Given the association of the PVYNTN strain with potato tuber damage, growers in Australia should implement appropriate strategies to manage PVYNTN in potato.


2020 ◽  
Author(s):  
LING LI ◽  
YING LI ◽  
Shaofang Lu ◽  
Jing Dong ◽  
Haixia Xu ◽  
...  

Abstract BACKGROUND Dengue virus (DENV) can be transmitted through blood transfusion. DENV was not screened regularly in Xishuangbanna Blood Center. This study was conducted in Xishuangbanna Blood Center with an attempt to develop DENV screening strategies in one of China’s high-incidence areas.METHODS Blood samples were collected randomly between June 2019 and August 2019. These samples were first screened for dengue IgG and IgM antibodies using enzyme-linked immunosorbent assay (ELISA). All reactive samples and some randomly-chosen non-reactive samples were used to detect DENV RNAs using real time polymerase-chain-reaction (RT-PCR) assay. After RT-PCR assay, these samples were further tested for soluble nonstructural protein 1 (NS1) using colloidal gold method. The demographic data of DENV positive donors were collected.RESULTS A total of 2,254 donor samples were collected and tested for dengue IgG and IgM antibodies by ELISA between June 2019 and August 2019. ELISA testing revealed that 598 donor samples were anti-IgG and/or anti-IgM reactive, with a serological prevalence rate of 26.53%. Among all the donor samples, 26 were RT-PCR positive and/or NS1 positive. Moreover, there were significant differences in the prevalence rate of DENV in terms of occupation (P=0.001), education(P<0.001) and ethnicity (P=0.026). CONCLUSION The prevalence of DENV in Xishuangbanna Blood Center was higher than most other blood centers that have implemented DENV donor screening. Our study provides the first-hand data about the prevalence of DENV and allows development of a screening strategy for clinical use.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
X. D. Li ◽  
Y. Q. Li ◽  
H. G. Wang

Flue-cured tobacco is an important crop in Henan Province, China. During the 2000 growing season, many tobacco plants showed various degrees of mottling, mosaic, vein clearing, or vein necrosis in most of the counties. Some plants even died at an early stage of growth. A survey was conducted in May-June in several tobacco-growing counties, and the incidence of symptomatic plants in individual fields ranged from 10 to 85%. The most widely planted tobacco varieties, NC89, K326, and K346, were highly susceptible. Symptomatic plants were collected from Jiaxian and Xiangcheng counties and samples were tested by enzyme-linked immunosorbent assay for Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Potato virus Y (PVY), and Potato virus X (PVX). Of 65 samples tested, 21 were positive for only PVY, 16 positive for only CMV, one each was positive for only TMV or PVX. Nineteen samples were doubly infected with various combinations of these viruses and six were infected with combinations of three viruses. The causal agent(s) in the remaining sample could not be determined. In total, CMV was detected in 40 samples, PVY in 38, PVX in 10, and TMV in 7 samples. TMV and CMV used to be the most important viruses and PVY occurred only rarely. But PVY has become prevalent in Henan and in neighboring Shandong province (2). CMV and TMV were reported to be the most prevalent viruses in Shanxi (1) and Fujian Provinces (3). Because resistant varieties are not available, and mixed infections are more common, the results presented here explain why huge damage is occurring in tobacco crops in recent years. Some varieties are partially resistant to TMV and CMV but the varieties commonly grown are highly susceptible to PVY. Therefore, breeding for resistance to viruses, especially to PVY, is urgent to control the occurrence of tobacco viral diseases. References: (1) J. L. Cheng et al. Acta Tabacaria Sin. 4:43, 1998. (2) J. B. Wang et al. Chinese Tobacco Sci. 1:26, 1998. (3) L. H. Xie et al. Acta Tabacaria Sin. 2:25, 1994.


2016 ◽  
Vol 34 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Pablo Gutiérrez S. ◽  
Mauricio Marín M. ◽  
Daniel Muñoz E.

Potato virus Y (PVY) is one of the most severe viruses affecting the production of potato (Solanum tuberosum) in the world. This study presents a detailed molecular analysis using nextgeneration sequencing (NGS), IC-RT-qPCR and RT-PCR on the PVY isolates infecting seed-tubers and foliage of potato plants cv. Diacol-Capiro in La Union (Antioquia, Colombia). Analysis of incidence by IC-RT-qPCR in 15 random leaf samples of three cultivation plots and fifteen sprouting tuber eye-buds reveal infection levels between 13.4 and 80%; a higher incidence of 86.7% was observed in seed-tuber samples with threshold cycle (Ct) values as low as 24.3. Genome assembly from a bulk of foliage samples resulted in a consensus PVY genome (PVY_LaUnionF) of 9,702 nt and 399 polymorphic sites within the polyprotein ORF; while the assembled genome from sprouts of tubers has 9,704 nt (PVY_LaUnionT) and contained only six polymorphic nucleotide sites. Phylogenetic analysis demonstrates that the PVY isolates from leaf samples are in the recombinant PVYNTN group (sequence identity >99%); while those from tuber sprouts are in the PVYN/NTN group with identities above 95%. Sanger sequencing of viral capsid suggests the presence of a third variant related to PVYO, a prevalent strain reported in potato fields worldwide.


Plant Disease ◽  
2021 ◽  
Author(s):  
Pengcheng Ding ◽  
Dexin Chen ◽  
Haixu Feng ◽  
Jiao Li ◽  
Hui Cao ◽  
...  

Potato is an important crop in Shanxi province located in north-central China. During 2019-2020, 319 potato leaf samples were collected from eight locations distributed in three major potato production areas in Shanxi. Bio-chip detection kit revealed the presence of several potato viruses, and among them potato virus Y (PVY) was the most common one, reaching the incidence of 87.8% of all symptomatic samples. The immuno-captured multiplex reverse transcription (RT)-PCR was used to identify strains for all 280 PVY-positive samples, unveiling 242 samples infected with a single strain of PVY (86.4%) and 38 (13.6%) with a mixed infection. Of samples with a single-strain infection, PVY -SYR-II accounted for 102 (42.1%), followed by PVYN-Wi (33, 13.6%) , PVY -SYR-I (28, 11.6%), 261-4 (22, 9.1%), PVYNTNa (20, 8.3%), PVYNTNb (19, 7.9%), and PVY -SYR-III (18, 7.4%). Seven isolates representing different recombinants were selected for whole genome sequencing. Phylogenetic and recombination analyses confirmed the RT-PCR based strain typing for all seven strains of PVY found in Shanxi. SXKL-12 is the first SYR-III strain from potato reported from China. However, unlike that in other known SYR-III isolates, the region positioned from 1,764 to1,902 nt in SXKL-12 shared the highest sequence identity of 82.2% with an uncharacterized PVY isolate, JL-23, from China. Interestingly, the PVYN-Wi isolate SXZY-40 also possessed a more divergent sequence for the region positioned from 6,156 to 6,276 nt than other N-Wi isolates known to date, sharing the highest identity of 86.6% with an uncharacterized Chinese PVY isolate, JL-11. Pathogenicity analysis of dominant strains PVY -SYR-II and PVYN-Wi in six local popular potato cultivars revealed that Kexin 13, Helan 15 and Jizhangshu 12 were susceptible to these two strains with mild mottling or mosaic symptoms expression, while three cultivars, Jinshu 16, Qingshu 9, Xisen 6 were found fully resistant.


Plant Disease ◽  
2006 ◽  
Vol 90 (2) ◽  
pp. 185-189 ◽  
Author(s):  
ZhiYou Du ◽  
JiShuang Chen ◽  
Chuji Hiruki

Search for a host RNA molecule appropriate as an internal control for reverse transcription-polymerase chain reaction (RT-PCR) detection of viruses in potato (Solanum tuberosum) was conducted. The 18S ribosomal RNA (rRNA) was compared with the commonly used nad2 mRNA in terms of detection sensitivity and degradation kinetics. Detection of 18S rRNA was 5 magnitudes more sensitive than that of nad2 mRNA. The 18S rRNA also displayed degradation kinetics more similar to that of Potato virus X (PVX). Based on this result, reaction components and cycling parameters were optimized for a multiplex RT-PCR protocol for simultaneous detection of five potato viruses using 18S rRNA as an internal control. The protocol simultaneously amplified cDNAs from Potato virus A, PVX, Potato virus Y, Potato leaf roll virus, Potato virus S, and 18S rRNA. The multiplex RT-PCR protocol was able to detect all viruses in different combinations. The technique was 100-fold greater for detection of PVX than that of commercial double-antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA), and also could detect viruses in some samples that DAS-ELISA failed to detect. This multiplex RT-PCR technique demonstrates a higher sensitivity of virus detection than DAS-ELISA.


2013 ◽  
Vol 70 (8) ◽  
pp. 1243-1248 ◽  
Author(s):  
Manphool Fageria ◽  
Sébastien Boquel ◽  
Gaetan Leclair ◽  
Yvan Pelletier

Sign in / Sign up

Export Citation Format

Share Document