scholarly journals First Report of Passion Fruit Anthracnose Caused by Colletotrichum constrictum

Plant Disease ◽  
2021 ◽  
Author(s):  
Na Wang ◽  
Fumei Chi ◽  
Zhirui Ji ◽  
Zongshan Zhou ◽  
Junxiang Zhang

Passion fruit (Passiflora edulis) is widely cultivated in tropic and subtropic regions. Because of its unique and intense flavour and high acidity, passion fruit juice concentrate is used in making delectable sauces, desserts, candy, ice cream, sherbet, or blending with other fruit juices. Anthracnose of passion fruit is favored by frequent rainfall and average temperatures above 27°C. In August 2018, anthracnose on passion fruit was observed in commercial plantings in Lincang, Yunnan, China (23.88 N, 100.08 E). Symptoms included lesions of oval to irregular shapes with brown to dark brown borders. Infection covered most of the fruit surface with pink-to-dark sporulation as reported by Tarnowski and Ploetz (2010). A conidial mass from an individual sorus observed on an infected fruit was isolated and cultured on potato dextrose agar (PDA) supplemented with 50 μg ml-1 of streptomycin. From a single microscopic field, two monospore isolates were dissected using a sterile needle, subcultured, and referred to as BXG-1 and BXG-2. Morphological characters including conidia colour, size, and shape were similar between the two isolates. Conidia were aseptate and cylindrical with apex and rounded base. Conidial length ranged from 12.3 to 16.1 µm (avg. 13.5) and width ranged from 5.5 to 6.2 µm (avg. 5.7). Morphologic data were consistent with Colletotrichum constrictum (Damm et al., 2012). To further confirm the fungal species, the ribosomal internal transcribed spacer (ITS), partial sequences of actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-tubulin 2 (TUB2) were amplified and sequenced. Primers and PCR amplification were described by Damm et al. (2012). The sequences were compared to type sequences in GenBank. The results showed the ITS (GenBank accession MW828148 and MW828149), ACT (MW855882 and MW855883), CHS-1 (MW855884 and MW855885), GAPDH (MW855886 and MW855887), and TUB2 (MW855888 and MW855889) sequences of the isolates BXG-1 and BXG-2 were 98% identical with sequence data from strain CBS:128504 of C. constrictum. A maximum likelihood tree was constructed using MEGA-X version 10.1.6 (Kumar et al., 2018) based on a combined dataset of the ITS, ACT, CHS-1, GAPDH, and TUB2 sequences of BXG-1 and BXG-2, and those of 18 Colletotrichum spp. previously deposited in GenBank (Damm et al., 2012). The phylogenetic analysis showed that BXG-1 and BXG-2 belong to the C. constrictum clade. Based on morphology and DNA sequencing, BXG-1 and BXG-2 were identified as C. constrictum. To verify pathogenicity, passion fruit were sprayed with a suspension of 1 × 105 conidia ml–1. Control fruit were sprayed with sterilized water. After inoculation, fruit were incubated in an Artificial Climate Box at 27°C and 80% RH. Necrotic symptoms appeared 8 days after inoculation and were similar to those observed on fruit form the field. The pathogen was reisolated from lesions thus fulfilling Koch’s postulates. C. constrictum has been reported to cause anthracnose of citrus from Australia (Wang et al., 2021) and mango from Italy (Ismail et al., 2015). To our knowledge, this is the first report of C. constrictum causing anthracnose on passion fruit worldwide, and these data will provide useful information for developing effective control strategies.

Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1380-1380 ◽  
Author(s):  
M. Guo ◽  
Y. M. Pan ◽  
Y. L. Dai ◽  
Z. M. Gao

Peucedanum praeruptorum Dunn, a traditional Chinese medicinal herb, is an important crop in Ningguo, China. Since 2010, leaf spot symptoms were observed yearly starting in June. Blighted leaf areas on individual plants ranged from 10 to 25% in many fields, and up to 200 ha were affected each year. Symptoms consisted of small, brown, necrotic spots uniformly distributed on the 1- to 2-week-old leaves. Small tissue pieces from the edges of lesions were disinfected in 2% NaClO for 3 min, rinsed twice in distilled water, plated on potato dextrose agar (PDA), and incubated at 25°C in darkness for 4 days. Single spore isolations were obtained for six strains. When inoculated on SNA media, the six strains produced typical septate mycelium, with the young hyphae hyaline and aged ones white greyish. Setae of the strains on SNA were brown, tip acute, 2- to 3-septate, and 32.5 to 85.6 μm long. Conidiogenous cells were hyaline, cylindrical, 2- to 3-septate, 6.2 to 16.5 μm in length, and 2.8 to 4.3 μm in width. The mature conidia were slightly curved, with round apex and truncate base, 1 to 5 oil globules, and were 13.3 to 23.8 μm in length and 3.0 to 3.9 μm in width, respectively. Appressoria were solitary or in loose groups, dark brown, irregular shapes, and were 6.8 to 9.2 μm in length and 4.3 to 7.1 μm in width. PCR amplification was carried out by utilizing the universal rDNA-ITS primer pair ITS4/ITS5 (1) and the actin gene primer pair ACT-512F and ACT-783R (2). The PCR products of ITS (GenBank Accession No. KC913201) and actin gene (KC913202) from six isolates were identical, respectively, and shared 100% identity to the ITS sequence of strain CBS 167.49 of Colletotrichum spaethianum (GU227807.1) and 99% similarity to the actin gene of strain CBS 167.49 of C. spaethianum (GU227905.1), which was isolated from Hosta sieboldiana in Germany (3). Based on the above, the isolates were identified as C. spaethianum. To confirm pathogenicity, conidial suspensions (105 conidia ml–1) of each of the six isolates were sprayed on four leaves per plant on five 6-month-old P. praeruptorum plants. Control plants were sprayed with water. Plants were maintained at 28°C in a greenhouse with constant humidity (RH 90%) and a 12-h photoperiod of fluorescent light. Symptoms similar to the original ones started to appear after 10 days, while the control plants remained healthy. The tests were repeated three times and the fungus was recovered and identified as C. spaethianum by both morphology and molecular characterization. To our knowledge, this is the first report of C. spaethianum causing leaf spot on P. praeruptorum in China. Since the C. spaethianum infections pose a serious threat to P. praeruptorum production, this disease needs to be considered for developing effective control strategies. References: (1) I. Carbone and L. M. Kohn. Mycologia 91:553, 1999. (2) U. Damm et al. Fung. Divers. 39:45, 2009. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fengying Han ◽  
Yu-tong Zhang ◽  
Zaize Liu ◽  
Lei Ge ◽  
Lian-Dong Wang ◽  
...  

The red-fleshed apple (Malus niedzwetzkyana) produces a colored fruit and rich anthocyanins and it has become popular among consumers in Shandong (Yang et al 2020). In recent years, anthracnose diseases have been reported in red-fleshed apple orchards and nurseries in Shandong province, China. The incidence of anthracnose in the red-fleshed apple plantings ranges from 50-90%. Initially, anthracnose lesions on fruit begin as sub-circular shaped, sunken, pale brown. Over time black lesions enlarged and coalesced into large necrotic areas. The sunken centers of mature lesion became filled with slimy pink sporulation. In September 2015, fifteen fruit with anthracnose symptoms and sporulation were collected, and 11 single-spore isolates were obtained. Three representative isolates (JNTW11, JNTW2, JNTW33) were used for morphological and molecular characterization. On PDA, the colonies were initially white and turned into pale brown in three days. Orange-brown pigmentation was produced near the center on the reverse. Aerial mycelium was cottony, dense, pale white to pale gray. Acervuli developed visible orange-pink conidial masses. Conidiophores were colorless, septate, not branched or branched at the base. Conidia were 1-celled, hyaline, subcylindrical, oblong, attenuated with blunt ends, and the average size was 16.7 ± 1.5 × 6.1 ± 0.9 μm (n = 50). Appressoria were brown, obovoid or irregular, 9.2 ± 1.6 × 8.0 ± 1.8 μm (n = 20). The morphological characters matched the descriptions of Colletotrichum gloeosporioides sensu lato (Cannon et al. 2008). Isolates JNTW11, JNTW2, and JNTW33 were subject to bioinformatic characterization by partial sequencing of 6 genetic loci including the ribosomal internal transcribed spacer (ITS), actin (ACT), beta-tub2 (TUB2), calmodulin (CAL), chitin synthase (CHS-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Weir et al, 2012). The ITS (MT577037, MT577040, MT577042), ACT (MT767712, MT767715, MT767717), TUB2 (MT767723, MT767726, MT767728), CAL (MT767689, MT767692, MT767694), CHS-1(MT767700, MT767703, MT767705), and GAPDH (MT767734, MT767737, MT767739) sequences were deposited in GenBank. The six sets of sequence data were concatenated “ITS-GAPDH-ACT-CHS-1-TUB2-CAL”, and the aligned sequences (2,007 bp) had 99.0% similarity to ex-type C. siamense ICMP18578. In a maximum likelihood phylogenetic tree, the highest log likelihood was -9148.55, and the isolates tested were in the C. siamense cluster with 96 % bootstrap support. Thus, the isolates were identified as C. siamense on the basis of multilocus phylogenetic analyses and morphological characters. To complete Koch’s postulates, several healthy red-fleshed apple fruit (‘Jiuhong’, 1 month prior to harvest) were inoculated using colonized and uncolonized hyphal plugs and a blank agar as a control. All inoculated fruit were placed in sterile tissue culture bottles containing 2 layers of wet paper towels at 28 °C under a 12 h light/dark cycle. All fruit developed anthracnose symptoms in 7 days while the controls did not develop any symptoms. The symptoms were similar to those collected from fruit in the field, and same fungus was re-isolated from the lesions. Presently it was known that C. acutatum, C. asianum, C. chrysophilum, C. cuscutae, C. fioriniae, C. fragariae, C. fructicola, C. gloeosporioides, C. godetiae, C. kahawae, C. karstii, C. limetticola, C. melonis, C. noveboracense, C. nymphaeae, C. paranaense, C. rhombiforme, C. salicis, and C. theobromicola could infect M. coronaria, M. domestica, M. prunifolia, M. pumila, and M. sylvestris worldwide. To our knowledge, this is the first report of C. siamense as a pathogen of M. niedzwetzkyana. This finding provides crucial information for the management of anthracnose disease in China.


Plant Disease ◽  
2020 ◽  
Author(s):  
Miaolian Xiang ◽  
Shucheng Li ◽  
Fan Wu ◽  
Xianyang Zhao ◽  
Yinbao Wang ◽  
...  

Tetradium ruticarpum, previously and commonly known as Evodia rutaecarpa, is a tree that produces a fruit which is one of the most important traditional Chinese medicine herbs in China (Zhao et al. 2015). In July 2019, an investigation of diseases of T. ruticarpum was conducted in the farmland of Ruichang County (29.68° N, 115.65° E), Jiujiang City, China. An unknown fruit rot disease was observed and the incidence rate was estimated to be 60% to 70% within a 5,000 m2 area. The early symptoms appeared as small circular to irregular dark brown or black spots on the fruit, which gradually coalesced to a light brown-to-black discoloration and caused fruit rot. To identify the causal agent of the disease, 10 diseased fruits were collected and surface disinfected with 2% sodium hypochlorite for 2 min, 70% ethanol for 30 s, rinsed in sterile water and dried on filter paper. Tissues from non-symptomatic tissue as well as from the margin between healthy and affected edge were incubated on potato dextrose agar (PDA) at 25±1°C (12 h light/dark) with 90% relative humidity for 5 days. The colonies were brown to black with abundant whitish margins. Conidiophores were brown and measured 20.40 – 43.10×1.30 – 4.20 μm (25.47 × 2.35 µm on average, n=50). Conidia produced in single or branched chains, were obclavate or ovoid, approximately 9.90 – 32.80×6.50 – 14.50 μm (28.75×12.57 µm on average, n=50) with 2 to 5 transverse septa and 0 to 3 longitudinal septa. The colonies were consistent with Alternaria alternata (Simmons 2007). For molecular identification, the f partial internal transcribed spacer (ITS) regions, Glyceraldehyde-3-phosphate dehydrogenase (gapdh) genes, translation elongation factor 1-alpha (TEF) and Alternaria major allergen (Alt a1) gene of the isolate were amplified using primers ITS1/ITS4 (White et al. 1990), GDF/GDR (Templeton et al. 1992), EF1-728F/EF1-986R (Carbone and Kohn 1999) and Alt-for/Alt-rev (Hong et al. 2005). Sequence data showed 100% homology to A. alternata (GenBank accessions No.MN625176.1 (570/570 bp), MK683866.1 (618/618 bp), MK637432.1 (281/281 bp), KT315515.1 (488/488 bp)), respectively and the sequence data were deposited into GenBank with accession numbers MN897753 (ITS), MT041998 (gapdh), MT041999 (TEF), and MT042000 (Alt a1). Based on both morphological and molecular characteristics, the pathogen was identified as A. alternata. To confirm pathogenicity, 10 μl of a spore suspension (1.0 × 106 conidia/ml) obtained from 5-day-old PDA cultures of the strain were inoculated on 20 wounded (using sterile needle) and 20 nonwounded healthy T. ruticarpum fruits previously disinfected in 75% ethanol. Control fruits including 20 wounded fruits and 20 nonwounded fruits were inoculated with sterilized water. All fruits were incubated at 25±1°C (12 h light/dark) with 90% relative humidity. Four days later, all the wounded and non-wounded fruits showed the initial symptoms of black rot which was similar to that observed in the field, while the wounded and nonwounded fruits treated with sterile water remained healthy. The same pathogen was again isolated from the inoculated fruits. The pathogenicity experiment was repeated three times with the same results. As far as we know, this is the first report of A. alternata causing fruits rot on T. ruticarpum in China, and the identification of the pathogen will provide useful information for developing effective control strategies.


2012 ◽  
Vol 10 (1) ◽  
pp. 140-146 ◽  
Author(s):  
Maryam Niyyati ◽  
Zohreh Lasjerdi ◽  
Mahdieh Nazar ◽  
Ali Haghighi ◽  
Ehsan Nazemalhosseini Mojarad

A survey was conducted to determine the presence of free-living amoebae (FLA), especially Acanthamoeba and Naegleria, in river recreation areas in Tehran Province, Iran. All rivers surveyed were associated with human activity, and two were also a source of municipal tap water. Fifty-five water samples from 10 major rivers were screened for FLA and identified by morphological characters, PCR amplification targeting specific genes for Acanthamoeba (DF3 region of Rns gene) and other FLA (ITS PCR), and homology analysis. The percentage of positive FLA isolates was 27.3%, of which 80% were Acanthamoeba, assigned to the T4 and T15 genotype, and 20% were Naegleria. Isolation of Acanthamoeba T4 genotype (91.7%) from recreation areas could be a health threat and a sanitary risk associated with human activity where young people and tourists congregate in summer. Posting of warning signs and education of high-risk individuals are important for disease prevention. To the best of our knowledge this is the first report of genotype T15 (clustered with A. jacobsi) identified in Iran and the first report of the distribution of FLA such as Naegleria (N. pagei, N. clarki and N. fultoni) in recreation areas in rivers of Tehran Province using molecular methods.


2021 ◽  
Vol 7 (7) ◽  
pp. 513
Author(s):  
Thuong T.T. Nguyen ◽  
Kerstin Voigt ◽  
André Luiz Cabral Monteiro de Azevedo Santiago ◽  
Paul M. Kirk ◽  
Hyang-Burm Lee

Three novel fungal species, Backusella chlamydospora sp. nov., B. koreana sp. nov., and B. thermophila sp. nov., as well as two new records, B. oblongielliptica and B. oblongispora, were found in Cheongyang, Korea, during an investigation of fungal species from invertebrates and toads. All species are described here using morphological characters and sequence data from internal transcribed spacer sequences of ribosomal DNA and large subunit of the ribosomal DNA. Backusella chlamydospora is different from other Backusella species by producing chlamydospores. Backusella koreana can be distinguished from other Backusella species by producing abundant yeast-like cells. Backusella thermophila is characterized by a variable (subglobose to oblong, applanate to oval, conical and ellipsoidal to pyriform) columellae and grows well at 37 °C. Multigene phylogenetic analyses of the combined ITS and LSU rDNA sequences data generated from maximum likelihood and MrBayes analyses indicate that B. chlamydospora, B. koreana, and B. thermophila form distinct lineages in the family Backusellaceae. Detailed descriptions, illustrations, phylogenetic tree, and taxonomic key to the Backusella species present in Korea are provided.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1247-1247 ◽  
Author(s):  
M. H. Nam ◽  
T. I. Kim ◽  
M. L. Gleason ◽  
J. Y. Song ◽  
H. G. Kim

Symptoms typical of anthracnose fruit rot; sunken, dark brown lesions on maturing fruits, were found in a commercial field of strawberry (Fragaria × ananassa) cv. Cal Giant in Yangyang County, Korea in May 2007. Masses of conidia were produced in acervuli in the center of lesions. The fungus was isolated on potato dextrose agar (PDA). Colonies grown on PDA were pale to mouse gray and became dark green to black in reverse. Conidia were formed in orange-to-salmon pink masses in the center of the culture. The average size of conidia on PDA was 15.2 × 4.6 μm, and they were hyaline, straight, cylindrical, with pointed ends, and aseptate (1). The fungus did not form an ascigerous stage in culture. Mycelial growth rate was 7.5 mm per day at 25°C on PDA. The identity of two isolates was confirmed as Colletotrichum acutatum J.H. Simmonds by PCR amplification using species-specific primers TBCA and TB5 (2), resulting in a characteristic 330-bp band on agarose gel. Morphological characters were in accordance with previous reports on C. acutatum. A pathogenicity test was conducted with five healthy plants of cvs. Cal Giant, Maehyang, Seolhyang, Kumhyang, Akihime, and Redpearl. After fruits and flowers were sprayed with a conidia suspension (105 conidia per ml), the plants were maintained at 10 to 25°C and 100% relative humidity in a greenhouse. As a control, five healthy plants were sprayed with sterile distilled water and incubated under the same conditions. Dark brown, water-soaked spots appeared on mature fruits of all cultivars after 5 days, and lesions on green fruits appeared on individual achenes. Flowers developed dark lesions, dried out, and died. No symptoms were found on the control plants. After the pathogen was reisolated from fruits and flowers lesions, the morphological characters developed in culture as described above. To our knowledge, this is the first report of C. acutatum causing strawberry anthracnose in Korea. References: (1) B. J. Smith and L. L. Black. Plant Dis. 74:69, 1990. (2) P. Talhinhas et al. Appl. Environ. Microbiol. 71:2987, 2005.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 288-288 ◽  
Author(s):  
F. M. Dai ◽  
R. Zeng ◽  
J. P. Lu

During May and June of 2009, canker and twig dieback were observed with 30 to 40% incidence in trees in one peach orchard in Nanhui of Shanghai (cv. YuLu juicy peach) and one orchard (cv. JingXiu yellow peach) in Jiaxin of Zhejiang Province, China. Cankers were generally centrally positioned on the nodes at the base of shoots with sunken, reddish brown/tan-to-silver symptoms. Blight was also observed on a few shoots (1). Five samples were collected from each orchard and isolations were conducted on potato sucrose agar (PSA). Ten isolates were obtained and all had white mycelia on PSA. Black pycnidia, formed in culture, produced two types of conidia: hyaline, fusiform alpha conidia and hyaline, string-like beta conidia. Alpha conidia varied from 5.0 to 6.3 × 1.5 to 2.5 μm and beta conidia ranged from 20 to 25 × 1.2 to 1.5 μm. Morphological characteristics suggested the identity of the fungal isolates to be Phomopsis amygdali. To confirm pathogenicity, an inoculum suspension was made from one isolate (106 conidia/ml) and was sprayed until runoff onto five twigs with buds. Inoculated twigs were maintained at 26°C and 100% relative humidity in a growth chamber with a 12-h period of fluorescent light daily. Twigs inoculated with sterilized water were included as noninoculated controls. After 4 days, dark brown lesions appeared around buds on inoculated twigs. No symptoms were observed on the control twigs. Constriction cankers were reproduced and P. amygdali was reisolated from the lesions. To confirm the identity of the pathogen, total genomic DNA was extracted with the cetyltrimethylammoniumbromide (CTAB) method from the mycelia of two isolates from YuLu juicy peach and Jinxiu yellow peach (2). PCR was performed with universal primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) to amplify a DNA fragment of approximately 550 bp. The PCR products were purified and sequenced in both directions (Sangon Biotech (Shanghai) Co., Ltd., China). The sequences (GenBank Accession Nos. HQ632013 and HQ632014) shared 98.9% identity with each other (MegAlign software; DNASTAR, Madison, WI). A comparison of these two sequences with those in GenBank showed that the sequences had the highest nucleotide similarity (99%) with P. amygdali isolate FAU1052 from peach in the southeastern United States (Accession No. AF102998). To our knowledge, this is the first report of P. amygdali causing twig canker on peach in China and will provide useful information for developing effective control strategies. References: (1) D. F. Farr et al. Mycologia 91:1008, 1999. (2) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA. 81:8014, 1984.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 375-375
Author(s):  
Sh. Seifbarghi ◽  
M. Razavi ◽  
M. Abbasi ◽  
R. Zare

Phalaris paradoxa (hood canarygrass) is one of the most abundant weeds in wheat fields of Iran. In a survey conducted from 2005 to 2007 in Ilam (Dehloran City) and Golestan (Gorgan City) provinces, leaf blotch symptoms were prevalent on P. paradoxa. Initial symptoms were pale brown and necrotic lesions that were 3 to 4 mm long on the leaves. Severity of the disease on the lower leaves was higher than on the upper leaves. Pycnidia were observed on the adaxial surface of infected leaves, scattered or sometimes in clusters, dark brown, globose, and 70 to 90 μm in diameter, with the ostiole approximately 10 μm in diameter. Conidia were filiform, hyaline, 0 to 3 septate (mostly 1 septate), and 17 to 40 × 1.5 to 2.0 μm. Conidiogenesis type was holoblastic. On the basis of the above morphological characters, this species was identified as Septoria phalaridis Cocc. & Morini (2,3). Sequencing the internal transcribed spacer (ITS) region of the fungus (GenBank Accession No. GU123926) showed 98% homology to Mycosphaerella graminicola strain 687 and 97% to S. passerinii strain ATCC26515 (GenBank Accession Nos. AB435068.1 and AF181696.1). To confirm pathogenicity of the fungus, 25 P. paradoxa seedlings were inoculated at the three-leaf stage with 20 ml of 1 × 107 spores/ml suspension with a hand sprayer. Plants were covered with a clear polyethylene bag to increase humidity and prevent cross contamination. After 72 h, bags were removed and plants were kept in a greenhouse at 21 ± 2/16 ± 2°C (day/night) and a 16-h photoperiod. Control plants received sterilized distilled water only. Leaves of each plant were visually inspected every day and the appearance of disease symptoms was recorded. After 1 month, all inoculated leaves showed symptoms and signs of the disease such as chlorosis, necrosis, and pycnidia, whereas control plants showed no symptoms or signs of disease. The infected plant tissues were examined with a microscope, the pycnidia and pycnidiospores were measured, and S. phalaridis was reisolated from leaf lesions. The first description of S. phalaridis was on P. brachystachys (1); however, to our knowledge, this is the first report of this pathogen on P. paradoxa. In addition, this is a new fungal species for the mycobiota of Iran. Two voucher specimens (IRAN 14078 F and IRAN 14218 F) were deposited in the Fungus Collection of the Ministry of Jihad-e Agriculture, Tehran, Iran. References: (1) G. Cocconi and F. Morini. Mem. R. Accad. Sci. Ist. Bologna, Cl. Sci. Fis. Ser. 4, 6:371, 1884. (2) M. J. Priest. Fungi of Australia, Septoria. ABRS, Canberra. CSIRO Publishing, Melbourne, 2006. (3) D. N. Teterevnikova-Babayan. Fungi of the Genus Septoria in the USSR. Akademiya Nauk Armyanskoi SSR, Yerevan, 1987.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3387
Author(s):  
Shi-Chen Xie ◽  
Yang Zou ◽  
Zhao Li ◽  
Jian-Fa Yang ◽  
Xing-Quan Zhu ◽  
...  

Enterocytozoon bieneusi is a fungus-like protist that can parasitize in the intestines of humans and various animals causing a threat to public health. However, there has been no data for E. bieneusi prevalence and genotypes in black goats in Yunnan Province, Southwestern China. In this study, 907 fecal samples were collected from black goats in 5 counties from Yunnan Province. The prevalence and genotypes of E. bieneusi were examined by nested PCR amplification targeting the nuclear internal transcribed spacer (ITS). Multi-locus sequence typing (MLST) was used to further examine the potential occurrence of genetic segregation. The overall prevalence of E. bieneusi in black goats in Yunnan Province was 10.3% (93/907). Statistical analysis revealed that E. bieneusi prevalence was significantly associated with the region, age and gender of black goats (p < 0.001). Four new genotypes (CYG-1, CYG-2, CYG-3, CYG-4) and 11 known genotypes (CHG1, CHG2, CHG3, CHG5, CHG28, J, D, BEB6, Wildboar3, CD6, SDD1) of E. bieneusi were identified. At the microsatellite and minisatellite loci, 15, 2, 17, and 33 sequences were obtained, respectively, forming one new multi-locus genotype (MLG27). Phylogenetic analysis revealed that all 15 genotypes were clustered into group 1 and group 2, with zoonotic potential. This is the first report of E. bieneusi prevalence and genotypes in black goats in Yunnan Province, China. Effective control strategies and measures should be taken to reduce the risk of E. bieneusi transmission between black goats, other animals, and humans.


Plant Disease ◽  
2011 ◽  
Vol 95 (2) ◽  
pp. 219-219 ◽  
Author(s):  
H. Xia ◽  
X.-L. Wang ◽  
H.-J. Zhu ◽  
B.-D. Gao

A new anthracnose disease on chili pepper (cayenne pepper cv. Hongxiu 2003, fruiting type pepper) was found in Zhijiang County, Hunan, China in 2009. The disease was observed only on the fruits. Lesions were generally elongated, on which dark acervuli were arranged concentrically. Later, cracking of older lesions was observed. With a microscope, fungal conidia were observed to be 15.8 × 4.1 μm, fusiform or oval with one end acute, and single celled with two to seven oil globules. No setae were found on the acervuli. Eight isolates (HNZJ001–HNZJ008) showed no difference in colony feature when cultured on potato dextrose agar. All the isolates showed white growth at the early stages, but colonies turned pink when they produced powdery spores and then finally became red gray. The average colony diameter was 68.5 to 72.3 mm after 7 days with obvious gray black concentric rings because of the development of aerial and substrate mycelia. After a needle-prick inoculation with a suspension of 1 × 106 spores per ml of HNZJ001 on 30 chili pepper fruits with three repeats, the same symptoms were observed and the same fungus was recovered. In bioassays, HNZJ001 caused lesions on both mature and immature fruits, while Glomerella cingulata strain LSQ1 (GenBank Accession No. HQ607386) used as a control did not infect immature fruits. PCR amplification was carried out by utilizing universal rDNA-ITS primer pair ITS4/ITS5. Sequencing of the PCR products of HNZJ001 (GenBank Accession No. GU059863) showed 100% identity to G. acutata (GenBank Accession No. EU008863) and Colletotrichum acutatum (GenBank Accession No. AF207794) after a BLAST search. The pathogen was identified as G. acutata (asexual stage: C. acutatum) on the basis of morphological characters and rDNA-ITS sequence analysis. Worldwide, it has been reported that pepper anthracnose might be caused by up to five species of Glomerella (Colletotrichum): G. cingulata, C. coccodes, C. capsici, C. dematium, and G. acutata (2), among which only the first three were previously reported in China. In recent years, G. acutata was reported on such plants as apple (3) and strawberry (1) in China, but not on pepper. To our knowledge, this is the first report of G. acutata on chili pepper in China. References: (1) X.-J. Ren et al. Acta Phytopathol. Sin. 38:325, 2008. (2) P. P. Than et al. Zhejiang Univ. Sci. B 9:764, 2008. (3) R. Zhang et al. Plant Dis. 92:1474, 2008.


Sign in / Sign up

Export Citation Format

Share Document