scholarly journals First Report of Erysiphe quercicola Causing Powdery Mildew on Ubame Oak in Korea

Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 77-77 ◽  
Author(s):  
H. B. Lee ◽  
C. J. Kim ◽  
H. Y. Mun ◽  
K. -H. Lee

Ubame oak (Quercus phillyraeoides A. Gray) is native to eastern Asia, including China, Korea, and Japan. In 2009 and 2010, a powdery mildew on Q. phillyraeoides growing in clusters and singly was observed in three locations on the campus of Chonnam National University, Gwangju, Korea. White superficial conidia of the powdery mildew fungus occurred on adaxial and abaxial surfaces. However, the white powdery growth was more abundant on the adaxial surface. Leaf symptoms commonly appeared white from May to October. Along with the typical white powdery mildew, spot and/or necrotic symptoms with irregular violet-to-wine red surfaces were also frequently observed on overwintered leaves. A voucher specimen has been deposited in EML (Environmental Microbiology Laboratory) herbarium collection, Chonnam National University (EML-QUP1). Conidia were commonly formed singly but also occurred in chains. Primary conidia were obovoid to ellipsoid, with a rounded apex and subtruncate base. Secondary conidia were generally obovoid to ellipsoid or sometimes cylindrical but dolioform when mature. The size was 30.1 to 43.2 (average 37.7) × 14.1 to 21.1 (average 18.1) μm with length/width ratio of 1.8 to 2.4 (average 2.1). Conidiophores were erect and up to 102.2 μm long. No chasmothecia were found. From extracted genomic DNA, the internal transcribed spacer (ITS) region inclusive of 5.8S rDNA was amplified with ITS1F (5′-CTTGGT CATTTAGAGGAAGT-3′) and LR5F (5′-GCTATCCTGAGGGAAAC-3′) primers (4). Sequence analysis by BLASTN search indicated that EML-QUP1 (GenBank Accession No. HQ328834) was closest to E. quercicola (GenBank Accession No. AB292691) with >99% identity (478 of 480), forming a monophyletic quercicola clade in the resulting phylogenetic analysis. The causal fungus was determined to be Erysiphe quercicola on the basis of morphology and sequence data analysis. Major genera including Cystotheca, Erysiphe, Microsphaera, and Phyllactinia have been reported to cause powdery mildews on Quercus plants. Until now, 22 Erysiphe species including E. abbreviata, E. alphitoides, E. calocladophora, E. gracilis, E. polygoni, and E. quercicola have been reported to cause powdery mildews on Quercus spp. (1). Of these, four Erysiphe species including E. alphitoides, E. gracilis, E. quercicola, and an unidentified Erysiphe sp. have been found on Q. phillyraeoides from Japan (1–3). E. quercicola was reported to occur on five Quercus species: Q. crispula, Q. phillyraeoides, and Q. serrata in Japan, Q. robur in Australia, and Quercus sp. in Australia, Iran, and Thailand (1). To our knowledge, this is the first report of leaf powdery mildew caused by E. quercicola on Q. phillyraeoides in Korea. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved October 7, 2010, from http://nt.ars-grin.gov/fungaldatabases/ , 2010. (2) S. Limkaisang et al. Mycoscience 47:327, 2006. (3) S. Takamatsu et al. Mycol. Res. 111:809, 2007. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 571-571 ◽  
Author(s):  
H. H. Xing ◽  
C. Liang ◽  
S. E. Cho ◽  
H. D. Shin

Japanese spiraea (Spiraea japonica L.f.), belonging to Rosaceae, is widely planted for its ornamental value in China. Since July 2011, powdery mildew infections on leaves and stems of Japanese spiraea have been noticed in some parks and gardens of Chengyang District in Qingdao City, China (GPS coordinates 36°31′04.22″ N, 120°39′41.92″ E). Symptoms first appeared as white spots covered with mycelium on both side of the leaves and young stems. As the disease progressed, abundant mycelial growth covered the whole shoots and caused growth reduction and leaf distortion with or without reddening. A voucher specimen was deposited in the herbarium of Qingdao Agricultural University (Accession No. HMQAU13013). Hyphae were flexuous to straight, branched, septate, 5 to 7 μm wide, and had nipple-shaped appressoria. Conidiophores arising from the upper surface of hyphal cells produced 2 to 5 immature conidia in chains with a crenate outline. Foot-cells of conidiophores were straight, 60 to 125 × 7 to 9 μm, and followed by 1 to 2 shorter cells. Conidia were ellipsoid-ovoid to doliiform, measured 25 to 32 × 12 to 15 μm with a length/width ratio of 1.8 to 2.6, and had distinct fibrosin bodies. Chasmothecia were not found. The structures and measurements were compatible with the anamorphic state of Podosphaera spiraeae (Sawada) U. Braun & S. Takam. as described before (1). The identity of HMQAU13013 was further confirmed by analysis of nucleotide sequences of the internal transcribed spacer (ITS) regions amplified using the primers ITS1/ITS4 (4). The resulting 564-bp sequence was deposited in GenBank (Accession No. KF500426). A GenBank BLAST search of complete ITS sequence showed 100% identity with that of P. spiraeae on S. cantoniensis (AB525940). A pathogenicity test was conducted through inoculation by gently pressing a diseased leaf onto five healthy leaves of a potted Japanese spiraea. Five non-inoculated leaves served as controls. The plants were maintained in a greenhouse at 22°C. Inoculated leaves developed typical symptoms of powdery mildew after 5 days, but the non-inoculated leaves remained symptomless. The fungus presented on the inoculated plant was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Powdery mildew of S. japonica caused by P. spiraeae has been recorded in Japan, Poland, and Switzerland (2,3). To our knowledge, this is the first report of powdery mildew caused by P. spiraeae on Japanese spiraea in China. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ September 10, 2013. (3) T. Kobayashi. Index of Fungi Inhabiting Woody Plants in Japan. Host, Distribution and Literature. Zenkoku-Noson-Kyoiku Kyokai Publishing Co. Ltd., Tokyo, 2007. (4) S. Matsuda and S. Takamatsu. Mol. Phylogenet. Evol. 27:314, 2003.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 421-421 ◽  
Author(s):  
H. H. Zhao ◽  
H. H. Xing ◽  
C. Liang ◽  
X. Y. Yang ◽  
S. E. Cho ◽  
...  

Chinese cabbage, Brassica rapa ssp. pekinensis (syn. Brassica pekinensis (Lour.) Rupr.), in the Brassicaceae, is an important vegetable grown on about 3 million ha in China. Since 2012, a powdery mildew has been found infecting Chinese cabbage plants (cv. Qingyanchunbai No. 1) after bolting for seed production from autumn through spring 2013 in a greenhouse in Qingdao, China. Symptoms first appeared as circular to irregular white patches on both sides of the leaves, and on stems and pods, often thinly covering the whole surface. A voucher specimen was deposited in the herbarium of Qingdao Agricultural University (Accession No. HMQAU12216). Hyphae were thin-walled, smooth, hyaline, and 4 to 6 μm wide. Appressoria on the mycelia were well developed, lobed, solitary, or in pairs. Conidiophores were erect, cylindrical, 45 to 110 μm long, and comprised 3 to 4 cells. Foot-cells of conidiophores were straight, cylindrical, 16 to 28 μm long, and 7.6 to 10 μm wide. Singly-produced conidia were oblong to cylindrical or somewhat ellipsoid-doliiform, 32 to 56 × 12 to 18 μm, with a length/width ratio of 1.8 to 3.8, with angular/rectangular wrinkling of the outer wall surface, and lacked distinct fibrosin bodies. Germ tubes were produced in the perihilar position of conidia. No chasmothecia were found. These structures are typical of the powdery mildew Pseudoidium anamorph of Erysiphe (2). The specific measurements and characteristics (especially short foot-cells of conidiophores) were consistent with previous records of Erysiphe cruciferarum Opiz ex L. Junell (2,3). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of isolate HMQAU12216 was amplified (4) and sequenced directly. The resulting 649-bp sequence was deposited in GenBank (Accession No. KC878683). A GenBank BLAST search of ITS sequences showed an exact match with those of E. cruciferarum on B. oleracea var. acephala (GU721075) and Oidium sp. on B. pekinensis (AB522714). A pathogenicity test was conducted by gently pressing a symptomatic leaf loaded with conidia onto a leaf of each five, healthy, potted, 40-day-old plants (cv. Qingyanchunbai No. 1). Five non-inoculated plants served as a control treatment. Inoculated plants were isolated from non-inoculated plants in separate rooms in a greenhouse at 20 ± 2°C. Inoculated plants developed signs and symptoms after 10 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants, thus fulfilling Koch's postulates. Though many Brassica spp. have been known to be infected with E. cruciferarum throughout the world, powdery mildew of Chinese cabbage caused by E. cruciferarum has been reported only in Finland, Germany, and Korea (1,3). To our knowledge, this is the first report of powdery mildew caused by E. cruciferarum on Chinese cabbage in China. Though occurrence of the powdery mildew on Chinese cabbage was noticed in an experimental breeding plot, this finding poses a potential threat to production of this vegetable in China. References: (1) U. Braun. The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena, Germany, 1995. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (3) H. J. Jee et al. Plant Pathol. 57:777, 2008. (4) S. Matsuda and S. Takamatsu. Mol. Phylogen. Evol. 27:314, 2003.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1086-1093 ◽  
Author(s):  
Marie-Laure Desprez-Loustau ◽  
Marie Massot ◽  
Nicolas Feau ◽  
Tania Fort ◽  
Antonio de Vicente ◽  
...  

Mango leaves and inflorescences infected by powdery mildew in southern Spain were analyzed using multigene sequencing (ITS + 4 single-copy coding genes) to identify the causal agent. Erysiphe quercicola was detected in 97% out of 140 samples, collected in six different orchards in the Malaga region. Among these, a small proportion also yielded E. alphitoides (8% of all samples) and E. alphitoides was found alone in 3% of samples. A phylogenetic approach was completed by cross inoculations between oak and mango, which led to typical symptoms, supporting the conspecificity of oak and mango powdery mildews. To our knowledge, this is the first report of E. quercicola and E. alphitoides causing powdery mildew on mango trees in mainland Spain, and thus mainland Europe, based on unequivocal phylogenetic and biological evidence. Our study thus confirmed the broad host range of both E. quercicola and E. alphitoides. These results have practical implications in terms of the demonstrated ability for host range expansion in powdery mildews. They also open interesting prospects to the elucidation of molecular mechanisms underlying the ability to infect single versus multiple and unrelated host plants since these two closely related powdery mildew species belong to a small clade with both generalist and specialist powdery mildews.


Plant Disease ◽  
2020 ◽  
Author(s):  
Mo Zhu ◽  
Jie Ji ◽  
Xiao Duan ◽  
Wenqi Shi ◽  
YongFang Li

Bromus catharticus, rescuegrass, is a brome grass that has been cultivated for herbage production, and been widely naturalized in many provinces of China, including Henan province. During April and May 2020, powdery mildew was found on leaves of Br. catharticus on the campus of Henan Normal University, Xinxiang city (35.3°N; 113.9°E), Henan Province, China. Abundant white or grayish irregular or coalesced circular powdery colonies were scattered on the adaxial surface of leaves and 70% of the leaf areas were affected. Some of the infected leaves either were chlorotic or senescent. About 60% of the observed plants showed powdery mildew symptoms. Conidiophores (n = 25) were 32 to 45 μm × 7 to 15 μm and composed of foot cells and conidia (mostly 6 conidia) in chains. Conidia (n = 50) were 25 to 35 μm × 10 to 15 μm, on average 30 × 13 μm, with a length/width ratio of 2.3. Chasmothecia were not found. Based on these morphologic characteristics, the pathogen was initially identified as Blumeria graminis f. sp. bromi (Braun and Cook 2012; Troch et al. 2014). B. graminis mycelia and conidia were collected, and total genomic DNA was extracted (Zhu et al. 2019). The rDNA internal transcribed spacer (ITS) region was amplified with primer pairs ITS1/ITS4. The amplicon was cloned and sequenced. The sequence (574 bp) was deposited into GenBank under Accession No. MT892940. BLASTn analysis revealed that MT892940 was 100% identical to B. graminis f. sp. bromi on Br. catharticus (AB000935, 550 of 550 nucleotides) (Takamatsu et al. 1998). Phylogenetic analysis of MT892940 and ITS of other B. graminis ff. spp. clearly indicated least two phylogenetically distinct clades of B. graminis f. sp. bromi and that MT892940 clustered with the Takamatsu vouchers. Leaf surfaces of five healthy plants were fixed at the base of a settling tower and then inoculated by blowing conidia from diseased leaves using pressurized air. Five non-inoculated plants served as controls. The inoculated and non-inoculated plants were maintained separately in two growth chambers (humidity, 60%; light/dark, 16 h/8 h; temperature, 18℃). Thirteen- to fifteen-days after inoculation, B. graminis signs and symptoms were visible on inoculated leaves, whereas control plants remained asymptomatic. The pathogenicity assays were repeated twice with the same results. The observed signs and symptoms were morphologically identical to those of the originally infected leaves. Accordingly, the causal organism of the powdery mildew was confirmed as B. graminis f. sp. bromi by morphological characteristics and ITS sequence data. B. graminis has been reported on Br. catharticus in the United States (Klingeman et al. 2018), Japan (Inuma et al. 2007) and Argentina (Delhey et al. 2003). To our best knowledge, this is the first report of B. graminis on Br. catharticus in China. Since hybridization of B. graminis ff. spp. is a mechanism of adaptation to new hosts, Br. catharticus may serve as a primary inoculum reservoir of B. graminis to infect other species (Menardo et al. 2016). This report provides fundamental information for the powdery mildew that can be used to develop control management of the disease in Br. catharticus herbage production.


Plant Disease ◽  
2021 ◽  
Author(s):  
In-Young Choi ◽  
Ho-Jong Ju ◽  
Kui-Jae Lee ◽  
Hyeon-Dong Shin

Verbena bonariensis L., named as purple-top vervain or Argentinian vervain, is native to tropical South America. It is cultivated worldwide as an ornamental plant. During summer and autumn of 2020, over 50% of the leaves of V. bonariensis were found infected with powdery mildew in a flower garden in Seoul (37°35'19"N 127°01'07"E), Korea. White, superficial mycelia developed initially on the leaves and subsequently covered surfaces of leaves and stems, are resulting in leaf discoloration, early defoliation, and shoots distortion. Heavily infected plants lost ornamental value. A representative voucher specimen was deposited in the Korea University herbarium (KUS-F32168). Morphological characterization and measurements of conidiophores and conidia were carried out using fresh samples. Microscopic observation showed that aAppressoria on the superficial hypha were nipple-shaped, but rarely found or nearly absent. Conidiophores (n = 30) were cylindrical, 110 to 220 × 10 to 12 µm, and produced 2 to 5 immature conidia in chains with a sinuate outline, followed by 2 to 3 short cells. Foot-cells of conidiophores were straight, cylindrical, and 46 to 90 μm long. Conidia (n = 30) were hyaline, ellipsoid to doliiform, 28 to 40 × 18 to 24 μm with a length/width ratio of 1.3 to 2.0, and contained small be like oil-like drops, but without distinct fibrosin bodies. Primary conidia were apically rounded and sub-truncate at the base. Germ tubes were produced at perihilar position of the conidia. Chasmothecia were not observed. These morphological characteristics were typical of the conidial stage of the genus Golovinomyces (Braun and Cook 2012, Qiu et al. 2020). To identify the fungus, rDNA was extracted from the voucher sample. PCR products were amplified using the primer pair ITS1F/PM6 for internal transcribed spacer (ITS), and PM3/TW14 for the large subunit (LSU) of the rDNA (Takamatsu and Kano 2001). The resulting sequences were registered to GenBank (MW599742 for ITS, and MW599743 for LSU). Using Blast’n search of GenBank, sequences showed 100% identity for ITS and LSU with G. ambrosiae (MT355557, KX987303, MH078047 for ITS, and AB769427, AB769426 for LSU), respectively. Thus, based on morphology and molecular analysis, the isolate on V. bonariensis in Korea was identified as G. ambrosiae (Schwein.) U. Braun & R.T.A. Cook. Pathogenicity tests were carried out by touching an infected leaf onto healthy leaves of disease-free pot-grown plants using a replication of five plants, with five non-inoculated plants used as controls. After 7 days, typical powdery mildew colonies started to appear on the inoculated leaves. The fungus on inoculated leaves was morphologically identical to that originally observed in the field. All non-inoculated control leaves remained symptomless. On different global Verbena species, tThere have been many reports of Golovinomyces powdery mildews including G. cichoracearum s.lat., G. longipes, G. monardae, G. orontii s.lat., and G. verbenae (Farr and Rossman 2021). In China, G. verbenae was recorded on V.erbena phlogiflora (Liu et al. 2006). Golovinomyces powdery mildew has not been reported on Verbena spp. in Korea. Powdery mildew has been reported on V. bonariensis in California, but identity of the causal agent had not been reported. To our knowledge, this is the first report on the identity of the powdery mildew caused by G. ambrosiae on V. bonariensis in Korea. Since heavily infected plants lost ornamental value, appropriate control measures should be developed.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 109-109 ◽  
Author(s):  
B. W. Schwingle ◽  
J. A. Smith ◽  
R. A. Blanchette ◽  
S. Gould ◽  
B. L. Blanchette ◽  
...  

Surveys for Phytophthora ramorum in Minnesota nurseries revealed the presence of P. hedraiandra de Cock & Man in't Veld and several other Phytophthora species but not P. ramorum. Symptomatic leaf and stem tissues from diseased Rhododendron and Quercus species were cultured on PARP, a selective growth medium for Phytophthora (3). The Phytophthora isolates obtained were later identified by sequencing the internal transcribed spacer (ITS) region of the rDNA and comparing the sequences with those in GenBank using BLAST searches (1). The ITS sequences of six cultures (GenBank Accession Nos. DQ139804-DQ139809), isolated during 2003 from various Rhododendron cultivars exhibiting leaf lesions and shoot dieback, showed 100% identity with the ITS sequence of P. hedraiandra (GenBank Accession No. AY707987) (2). This is a recently described pathogenic species from the Netherlands responsible for causing leaf spots on Viburnum spp. Since the ITS sequence of P. hedraiandra differs little from that of P. cactorum (2), we verified one isolate to be P. hedraiandra by sequencing the mitochondrial cytochrome c oxidase subunit I gene (cox1) (GenBank Accession No. DQ139810). Comparison of this sequence with the P. hedraiandra voucher specimen in GenBank (Accession No. AY769115) showed 99% identity, which was the closest match. Reproductive structures were measured on V8 juice agar. The average oogonium diameter for three isolates was 29 μm with a range of 26 to 32 μm, while the average antheridium length was 13 μm (11 to 15 μm). Sporangium length and width averages on crushed hemp seeds were 32 μm (28 to 36 μm) and 26 μm (21 to 30 μm), respectively, with the average length to width ratio of 1.25 (1.23 to 1.29). Pathogenicity tests on Rhododendron cv. Mikkeli were carried out using three of our P. hedraiandra isolates. Spore suspensions of 2 × 104 zoospores per ml were used to mist-spray shoots of five, 3-year-old plants for each isolate. Five controls were mist sprayed with water. After inoculation, plants were placed in plastic bags in a dark growth chamber (22°C) for 7 days and then moved to a greenhouse. Leaf blotches and shoot dieback were apparent 5 days after inoculation, and P. hedraiandra was reisolated from those symptomatic tissues and identified by an exact match of the ITS sequence. Necrotic areas lengthened from the shoot tips to the main stems of the plants while expanding into petioles and leaves. No symptoms were observed on control plants. To our knowledge, this is the first report of P. hedraiandra in the United States as well as the first report of Koch's postulates performed with P. hedraiandra on Rhododendron cv. Mikkeli. The significance of this disease to other woody plants in nurseries or the landscape is unknown, and further study is needed to determine the host range and extent of the disease that may occur from this introduction. References: (1) S. F. Altschul et al. J. Mol. Biol. 215:403, 1990. (2) A. W. A.M de Cock and C. A. Lévesque. Stud Mycol 50:481, 2004. (3) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1072-1072 ◽  
Author(s):  
M. J. Park ◽  
S. E. Cho ◽  
J. H. Park ◽  
S. K. Lee ◽  
H. D. Shin

Hydrangea macrophylla (Thunb.) Ser., known as mophead hydrangea, is native to Japan and is used as a potted ornamental or is planted for landscaping in gardens worldwide. In May 2011, powdery mildew occurred on potted mophead hydrangea cv. Emerald plants in polyethylene-film-covered greenhouses in Icheon, Korea. Heavily infected plantings were unmarketable, mainly due to purplish red discoloration and crinkling of leaves. Such powdery mildew symptoms on mophead hydrangea in gardens had been often found in Korea since 2001, and the collections (n = 10) were deposited in the Korea University herbarium (KUS). In all cases, there was no trace of chasmothecia formation. Mycelium was effuse on both sides of leaves, young stems, and flower petals. Appressoria were well developed, lobed, and solitary or in opposite pairs. Conidiophores were cylindrical, 70 to 145 × 7.5 to 10 μm, and composed of three to four cells. Foot-cells of conidiophores were straight to sub-straight, cylindric, short, and mostly less than 30 μm long. Conidia produced singly were ellipsoid to oval, 32 to 50 × 14 to 22 μm with a length/width ratio of 1.7 to 2.8, lacked fibrosin bodies, and showed angular/rectangular wrinkling of outer walls. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically conical, basally rounded to subtruncate, 32 to 42 × 14 to 18 μm, and thus generally smaller than the secondary conidia. The morphological characteristics are consistent with previous descriptions of Oidium hortensiae Jørst. (3,4). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F25514 was amplified with primers ITS5 and P3 and directly sequenced. The resulting sequence of 694 bp was deposited in GenBank (Accession No. JQ669944). There was no ITS sequence data known from powdery mildews on Hydrangea. Therefore, this is the first sequence of O. hortensiae submitted to GenBank. Nevertheless, a GenBank BLAST search of this sequence showed >99% similarity with those of Oidium spp. recorded on crassulacean hosts (e.g. GenBank Accession Nos. EU185641 ex Sedum, EU185636 ex Echeveria, and EU185639 ex Dudleya) (2), suggesting their close phylogenetic relationship. Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of five healthy potted mophead hydrangea cv. Emerald plants. Five noninoculated plants of the same cultivar served as controls. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Occurrence of powdery mildew disease on mophead hydrangea is circumglobal (1). To our knowledge, this is the first report of powdery mildew disease caused by O. hortensiae on mophead hydrangea in Korea. Powdery mildew infections in Korea pose a serious threat to the continued production of quality potted mophead hydrangea in polyethylene-film-covered greenhouses. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved March 19, 2012, from http://nt.ars-grin.gov/fungaldatabases/ . (2) B. Henricot. Plant Pathol. 57:779, 2008. (3) A. Schmidt and M. Scholler. Mycotaxon 115:287, 2011. (4) S. Tanda. J. Agric. Sci. Tokyo Univ. Agric. 43:253, 1999.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1013-1013 ◽  
Author(s):  
I. Y. Choi ◽  
B. S. Kim ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Gypsophila paniculata L. (baby's breath, family Caryophyllaceae), native to Central and Eastern Europe, is commonly cultivated as a commercial cut flower crop in greenhouses in Korea. Since 2011, baby's breath cv. Cassiopeia has been observed affected by a powdery mildew with nearly 100% disease incidence at the stage of harvesting in Iksan City. Powdery mildew colonies first appeared as thin white patches on stems and both sides of the leaves. As disease progressed, plants were covered with dense masses of spores, followed by senescence and reduction of quality of cut flowers. A voucher specimen was deposited in the Korea University Herbarium (Accession KUS-F27313). Appressoria were well-developed, multilobed or moderately lobed, and single or opposite in pairs. Conidiophores were straight, 95 to 150 × 7 to 10 μm, and composed of 3 to 4 cells. Foot-cells were cylindric or slightly sinuous at the base and 37 to 53 μm long. Singly produced conidia were cylindrical to oblong-elliptical, 35 to 56 × 12.5 to 18 μm with a length/width ratio of 2.1 to 3.6, devoid of fibrosin bodies, and with angular/rectangular wrinkling of outer walls. Germ tubes were in the perihilar position on conidia, and ended with lobed appressoria. No chasmothecia were found. These structures are typical of the Pseudoidium anamorph of the genus Erysiphe. Specific measurements and host range were consistent with those of E. buhrii U. Braun (2). To confirm identification, the complete internal transcribed spacer (ITS) region of rDNA of isolate KUS-F27313 was amplified with primers ITS1/ITS4, and sequenced directly. The resulting 725-bp sequence was deposited in GenBank (KJ530705). A GenBank BLAST search of the Korean isolate showed 99% similarity with E. buhrii on Acanthophyllum sp. (Caryophyllaceae) from Iran (AB128924). Pathogenicity was confirmed through inoculation by gently dusting conidia onto leaves of five healthy, potted baby's breath cv. Cassiopeia. Five non-inoculated plants served as controls. Inoculated plants were isolated from non-inoculated plants in separate rooms in a greenhouse at 25 ± 2°C. Inoculated plants developed signs and symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Pathogenicity test was repeated twice. The powdery mildew disease caused by E. buhrii on baby's breath has been recorded in the former Soviet Union (Armenia, Kazakhstan, Ukraine), Romania, Turkey, Iran, Mongolia, and Argentina (1,3). Also, a fungus occurring on baby's breath was recorded as Oidium sp. from Japan (4). To our knowledge, this is the first report of powdery mildew caused by E. buhrii on baby's breath in Korea. Powdery mildew infections pose a serious threat to production of this cut flower crop. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 1986. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved February 18, 2014. (4) M. Satou et al. Ann. Phytopathol. Soc. Jpn. 62:541, 1996.


Plant Disease ◽  
2020 ◽  
Author(s):  
Siti Izera Ismail ◽  
Aziera Roslen

Euphorbia tithymaloides L. (zig-zag plant) is a succulent, perennial shrub belonging to the Euphorbiaceae family and is widely cultivated in Malaysia for ornamental purposes and commercial values. In June 2019, typical symptoms of powdery mildew were observed on over 50% of the leaves of E. tithymaloides in a garden at Universiti Putra Malaysia, Serdang city of Selangor province, Malaysia. Initial symptoms included circular to irregular white powdery fungal colonies on both leaf surfaces and later covered the entire leaf surface. Severely infected leaves became necrotic, distorted and senesced. A voucher specimen Ma (PM001-Ma) was deposited in the Mycology laboratory, Faculty of Agriculture, UPM. Microscopic observation showed hyphae hyaline, branched, thin-walled, smooth, 3 to 6 µm wide with nipple-shaped appressoria. Conidiophores were straight, measured 30 to 90 μm long × 8 to 12 μm wide and composed of a cylindrical foot cell, 50 to 75 μm long. Conidia formed in chains were hyaline, ellipsoid to oval with fibrosin bodies, measured 25 to 36 × 16 to 20.1 μm in size and chasmothecia were not observed on the infected leaves. Genomic DNA was directly isolated from mycelia and conidia of isolate Ma using DNeasy Plant Mini Kit (Qiagen, USA). The universal primer pair ITS4/ITS5 of rDNA (White et al. 1990) was used for amplification and the resulting 569-bp sequence was deposited in GenBank (Accession no. MT704550). A BLAST nucleotide search revealed 100% similarity with that of Podosphaera xanthii on Momordica charantia wild from Taiwan (Accession no. KM505135) (Kirschner and Liu 2015). Both the morphological characteristics of the anamorph and ITS sequence data support the identification of this powdery mildew on E. tithymaloides as Podosphaera xanthii (Castagne) U. Braun & Shishkoff (Braun and Cook 2012). A pathogenicity test was conducted by gently pressing the infected leaves onto young leaves of five healthy potted plants. Five noninoculated plants were used as controls. The inoculated plants were maintained in a greenhouse at 25 ± 2°C and the test was repeated. Seven days after inoculation, white powdery symptoms were observed similar to those on the naturally infected leaves, while control plants remained asymptomatic. The fungus on the inoculated leaves was morphologically and molecularly identical to the fungus on the original specimens. Sequence alignments were made using MAFFT v.7.0 (Katoh et al. 2019) and a maximum likelihood phylogram was generated by MEGA v.7.0 (Kumar et al. 2016). Isolate Ma grouped in a strongly supported clade (100% bootstrap value) with the related species of P. xanthii available in GenBank based on the ITS region. Powdery mildew caused by P. xanthii has been reported as a damaging disease that can infect a broad range of plants worldwide (Farr and Rossman 2020). It also has been recently reported on Sonchus asper in China (Shi et al. 2020). According to our knowledge, this is the first report of powdery mildew caused by P. xanthii on E. tithymaloides worldwide. The occurrence of powdery mildew on E. tithymaloides could pose a serious threat to the health of this plant, resulting in death and premature senescence of young leaves.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 999-999 ◽  
Author(s):  
J. K. Choi ◽  
B. S. Kim ◽  
S. H. Hong ◽  
S. E. Cho ◽  
H. D. Shin

Ixeris chinensis (Thunb.) Nakai, known as Chinese ixeris, is distributed from Siberia to Japan, including Korea, Taiwan, and China. The whole plant has been used in folk medicine in Asia (4). In Korea, the plants of Chinese ixeris have been gathered and used as a wild root vegetable. During summer to autumn of 2011, Chinese ixeris leaves were found to be heavily infected with a powdery mildew in several locations of Korea. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on both sides of the leaves, leading to drying of the leaves. The same symptoms on Chinese ixeris leaves were continuously observed in 2012 and 2013. Voucher specimens (n = 10) were deposited at Korea University Herbarium (KUS). Hyphal appressoria were moderately lobed or nipple-shaped. Conidiophores arose from the lateral part of the hyphae, measured 100 to 270 × 10 to 12.5 μm, and produced 2 to 6 immature conidia in chains with a sinuate outline. Basal parts of foot-cells in conidiophores were curved. Conidia were barrel-shaped to ellipsoid, measured 26 to 36 × 13 to 19 μm (length/width ratio = 1.7 to 2.4), lacked fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were ovate with conical-obtuse apex and subtruncate base. Germ tubes were produced on the perihilar position of conidia. Chasmothecia were not observed. The morphological characteristics were typical of the Euoidium type anamorph of the genus Golovinomyces, and the fungus measurements and structures were consistent with those of G. sonchicola U. Braun & R.T.A. Cook (1). To confirm the identification, internal transcribed spacer (ITS) region of rDNA sequences from a representative material (KUS-F26212) was amplified using primers ITS5/P3 and sequenced (3). The resulting 416-bp sequence was deposited in GenBank (Accession No. KF819857). A GenBank BLAST search revealed that the isolate showed >99% sequence similarity with those of G. cichoracearum from Sonchus spp. (e.g., AB453762, AF011296, JQ010848, etc.). G. sonchicola is currently confined to G. cichoracearum s. lat. on Sonchus spp., based on molecular sequence analyses (1). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of five healthy potted Chinese ixeris. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 6 days, whereas the controls remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Powdery mildew infections of I. chinensis associated with Golovinomyces have been known in China (2). To our knowledge, this is the first report of powdery mildew disease caused by G. sonchicola on I. chinensis in Korea. Farming of Chinese ixeris has recently started on a commercial scale in Korea. Though no statistical data are available, we postulate the cultivation area in Korea to be approximately 200 ha, mostly growing without chemical controls. Occurrence of powdery mildews poses a potential threat to safe production of this vegetable, especially in organic farming. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) F. L. Tai. Bull. Chinese Bot. Sci. 2:16, 1936. (3) S. Takamatsu et al. Mycol. Res. 113:117, 2009. (4) S. J. Zhang et al. J. Nat. Prod. 69:1425, 2006.


Sign in / Sign up

Export Citation Format

Share Document