scholarly journals First Report of Pseudomonas syringae pv. aptata Causing Bacterial Leaf Spot on Sugar Beet in Serbia

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 281-281 ◽  
Author(s):  
V. Stojšin ◽  
J. Balaž ◽  
D. Budakov ◽  
Slaviša Stanković ◽  
I. Nikolić ◽  
...  

A severe bacterial leaf spot was observed during June and July 2013 on commercial cultivars of sugar beet (Beta vulgaris var. saccharifera) in the Vojvodina Province of Serbia. Serbia is a major sugar beet production area in southeastern Europe, with 62,895 ha and 3 million tons of sugar beet yield in 2013. A foliar leaf spot observed in 25 commercial sugar beet fields surveyed ranged from 0.1 to 40% severity. Symptoms were characterized as circular or irregular, 5- to 20-mm diameter, white to light brown necrotic spots, each with a dark margin. Diseased leaves were rinsed in sterilized, distilled water (SDW) and dried at room temperature, and leaf sections taken from the margin of necrotic tissue were macerated in SDW. Isolations from 48 symptomatic leaves onto nutrient agar with 5% (w/v) sucrose (NAS) produced bacterial colonies that were whitish, circular, dome-shaped, and Levan-positive. Representative isolates (n = 105) were Gram negative; aerobic; positive for catalase, fluorescence on King's medium B, and tobacco hypersensitivity; and negative for oxidase, potato rot, and arginine dehydrolase. These reactions corresponded to LOPAT group Ia, which includes Pseudomonas syringae pathovars (2). Repetitive extragenic palindromic sequence (rep)-PCR was used for genetic fingerprinting the isolates using the REP, ERIC, and BOX primers. Twenty-five different profiles were obtained among the strains. From each profile group, one representative strain was sequenced for the gyrB gene (1). Four heterogenic groups were observed, and representative gyrB gene sequences of each group were deposited in the NCBI GenBank (Accession Nos. KJ950024 to KJ950027). The sequences were compared with those of pathotype strain P. syringae pv. aptata CFBP 1617 deposited in the PAMDB database; one strain was 100% homologous, and the other three were 99% homologous. To fulfill identification of the Serbian sugar beet isolates, gltA and rpoD partial gene sequences were determined (1), and the sequences were deposited as Accession Nos. KM386838 to KM386841 for gltA and KM386830 to KM38683033 for rpoD. The sequences were 100% homologous with those of pathotype strain CFBP 1617. Pathogenicity of each of four representative bacterial strains was tested on 3-week-old plants of the sugar beet cultivars Marinela, Serenada, and Jasmina (KWS, Belgrade, Serbia) and Lara (NS Seme, Novi Sad, Serbia) by atomizing a bacterial suspension of ~106 CFU/ml of the appropriate isolate onto the abaxial leaf surface of three plants per cultivar until water-soaking of the leaf surface was observed. Three plants of each cultivar atomized similarly with P. syringae pv. aptata CFBP 2473 and SDW served as positive and negative control treatments, respectively. Inoculated plants were kept in a clear plastic box at 80 to 100% RH and 17 ± 1°C and examined for symptom development over 3 weeks. For all test isolates and the control strain, inoculated leaves first developed water-soaked lesions 7 days after inoculation (DAI). By 10 to 14 DAI, lesions were necrotic and infection had spread to the petioles. By 21 DAI, wilting was observed on more than 50% of inoculated plants. Negative control plants were symptomless. Bacteria re-isolated onto NAS from inoculated leaves had the same colony morphology, LOPAT results, and gyrB partial gene sequences as described for the test strains. No bacteria were re-isolated from negative control plants. Based on these tests, the pathogen causing leaf spot on sugar beet in Serbia was identified as P. syringae pv. aptata. References: (1) P. Ferrente and M. Scortichini. Plant Pathol. 59:954, 2010. (2) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966.

Plant Disease ◽  
2021 ◽  
Author(s):  
Marilen Nampijja ◽  
Mike Derie ◽  
Lindsey J. du Toit

Arizona is an important region of the USA for winter production of baby leaf crops such as spinach (Spinacia oleracea), table beet (Beta vulgaris subsp. vulgaris Condivita Group), and Swiss chard (B. vulgaris subsp. vulgaris Cicla Group). In the winter of 2019, severe leaf spots were observed at 80% incidence and 40% severity per plant in a 1-ha baby leaf Swiss chard crop of an (unknown cultivar) in Arizona. The lesions were circular to irregular, necrotic, water-soaked, and 1 to 5 mm in diameter. Symptomatic leaf sections (1-cm2) were surface-sterilized with 0.6% NaOCl, rinsed, and macerated in sterilized, deionized water. An aliquot of each macerate was streaked onto King’s B (KB) agar medium. Cream-colored, non-fluorescent colonies typical of Pseudomonas were isolated consistently, and all were non-fluorescent. A dozen isolates selected randomly were all negative for potato soft rot, oxidase, and arginine dihydrolase, and positive for levan production and tobacco hypersensitivity, which is typical of fluorescent P. syringae isolates, but can also include non-fluorescent strains (Lelliot et al. 1966). Three isolates were tested for pathogenicity on the table beet cv. Red Ace and Swiss chard cv. Silverado. Strain Pap009 of P. syringae pv. aptata (Psa), demonstrated previously to be pathogenic on Swiss chard and table beet, served as a positive control strain (Derie et al. 2016; Safni et al. 2016). Each isolate was grown inoculated into medium 523 broth and incubated on a shaker at 175 rpm overnight at 25°C. Each bacterial suspension was adjusted to an optical density (OD) of 0.3 at 600 nm (108 CFU/ml), and diluted in 0.0125M phosphate buffer to 107 CFU/ml. Thirty-day-old seedlings grown in Redi-Earth Plug and Seedling Mix in a greenhouse at 22 to 26°C were inoculated by rubbing the abaxial and adaxial leaf surfaces of each plant with a cotton swab dipped in inoculum to which Carborundum had been added (0.06 g/10 ml). The negative control plants were treated similarly with phosphate buffer with Carborundum. The experiment was set up as a randomized complete block design with 4 replications per treatment and 6 seedlings per experimental unit. In both trials, leaf spots resembling those on the original plants developed on all table beet and Swiss chard plants inoculated with the Arizona isolates and Pap009, but not on negative control plants. Disease severity was greater on Swiss chard (average 39% leaf area with spots) than on table beet (14%). Re-isolates obtained from inoculated seedlings using the same method as the original isolations resembled Psa. Multilocus sequence analysis (MLSA) was carried out for the original three Arizona isolates and the re-isolates using DNA amplified from the housekeeping genes gyrB, rpoD, gapA, and gltA (Hwang et al. 2005; Sarkar and Guttman 2004). Sequence identities of these genes of the Arizona isolates (GenBank accession numbers MW291615 to MW291618 for strain Pap089; MW291619 to MW291622 for Pap095; and MW291623 to MW291626 for Pap096 for gltA, gyrB, rpoD, and gapA, respectively) and the re-isolates ranged from 98 to 100% with those of Psa pathotype strain CFBP 1617 in the PAMDB database (Almeida et al. 2010; Altschul et al. 1997). Based on Koch’s postulates, colony characteristics, and MLSA, Psa was the causal agent of leaf spots in the Arizona Swiss chard crop. To our knowledge, this is the first report of bacterial leaf spot on chard in Arizona. The pathogen could have been introduced on infected seed as Psa is readily seedborne and seed transmitted.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1311-1311 ◽  
Author(s):  
I.-S. Myung ◽  
J. H. Joa ◽  
H. S. Shim

In April 2007, a bacterial leaf spot of onion (Allium cepa L.) was observed in fields of Namjeju, Jeju Province in Korea with incidence varying from 95 to 100%. Symptoms on leaves included leaf blight and white and brown spots on the leaf surface. Eight bacterial isolates were recovered on trypticase soy agar (TSA) from leaf spot and blight lesions that were surface sterilized in 70% ethanol for 1 min. The isolates were fluorescent on King's B agar and gram-negative, aerobic rods with one to three polar flagella. All isolates belonged to P. syringae (LOPAT) group Ia (+, −, −, −, +) (1). The gyrB, rpoD (2), and rpoB regions (4) of the isolates and reference strain Pseudomonas syringae pv. porri CFBP 1908PT (=BC2583) were partially sequenced using reported primers (2,4). The rpoB region (1,119 bp) of the isolates (GenBank Accession Nos. JF719311–JF719318 for rpoB) shared 100% identity with P. syringae pv. porri CFBP 1908PT (GenBank Accession No. JF719319). Phylogenetic analysis based on partial sequences of the gyrB (660 bp) and rpoD (590 bp) loci of Pseudomonas spp. available in the GenBank (2,4), the reference strain P. syringae pv. porri CFBP 1908PT, and the field isolates was conducted using Jukes-Cantor model in MEGA Version 4.1 (3). The isolates and reference strain P. syringae. pv. porri CFBP 1908PT clustered in one group (GenBank Accession Nos. JF719293–JF719300 for gyrB; JF719302–JF719309 for rpoD). On the basis of phenotypic and pathological characteristics and the sequences, the eight isolates were identified as P. syringae pv. porri. Pathogenicity was evaluated on 3-week-old onion plants (cv. Marushino 330) by spot and spray inoculation. Bacteria were grown on TSA for 24 h at 28°C. Five microliters of bacterial suspension in sterile distilled water (1 × 106 CFU/ml) were spot inoculated on pinpricked positions of five leaves for each isolate and incubated in humid plastic boxes at 27°C. Spot-inoculated surfaces turned white 2 days after inoculation, followed by brownish discoloration. A bacterial suspension in sterile distilled water (100 ml at 1 × 106 CFU/ml) was sprayed onto three plants for each isolate. Plants were maintained in a greenhouse at 18 to 27°C and 80% relative humidity. Isolates induced identical symptoms on all inoculated plants 2 weeks after spray inoculation as those originally observed on onion in the fields. Bacteria were reisolated 3 weeks after inoculation from diseased lesions surface sterilized in 70% ethanol for 1 min and the identity of the reisolated bacteria confirmed by analyzing the sequences of rpoD gene (2). No symptoms were noted on intact plants inoculated with sterilized distilled water. To our knowledge, this is the first report of bacterial leaf spot of onion caused by P. syringae pv. porri in Korea. The disease is expected to have a significant economic impact on onion culture in the fields of Jeju Province in Korea. References: (1) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (2) H. Sawada et al. J. Mol. Evol. 49:627, 1999. (3) K. Tamura et al. Mol. Biol. Evol. 24:1596, 2007. (4) L. Tayeb et al. Res. Microbiol. 156:763, 2005.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1064-1064 ◽  
Author(s):  
I.-S. Myung ◽  
J. Y. Lee ◽  
H. L. Yoo ◽  
J. M. Wu ◽  
H.-S. Shim

In September 2011, bacterial leaf spot was observed on zinnia plants (Zinnia elegans L.) grown in a garden in Suwon, Korea. Leaf symptoms included angular lesions that were yellow or brown-to-reddish brown in the center. Bacterial isolates (BC3293 to BC3299) were recovered on trypticase soy agar from lesions surface-sterilized in 70% ethyl alcohol for 1 min. Pathogenicity of the isolates was confirmed by spray inoculation with a bacterial suspension (106 CFU/ml) prepared in sterile distilled water and applied to zinnia plants at the four- to five-leaf growth stage (two plants per isolate). Sterile distilled water was used as the negative control. The inoculated plants were incubated in a greenhouse at 26 to 30°C and 95% relative humidity. Characteristic leaf spot symptoms developed on inoculated zinnia plants 5 days after inoculation. No symptoms were observed on the negative control plants. The bacterium reisolated from the inoculated leaves was confirmed through gyrB gene sequence analysis (3). All isolates were gram-negative, aerobic rods, each with a single flagellum. Isolates were positive for catalase and negative for oxidase. The biochemical and physiological tests for differentiation of Xanthomonas were performed using methods described by Shaad et al. (2). The isolates were positive for mucoid growth on yeast extract-dextrose-calcium carbonate agar, growth at 35°C, hydrolysis of starch and esculin, protein digestion, acid production from arabitol, and utilization of glycerol and melibiose. Colonies were negative for ice nucleation, and alkaline in litmus milk. The gyrB gene (870 bp) and the 16S-23S rRNA internal transcribed spacer (ITS) regions (884 bp) were sequenced to aid in identification of the original field isolates using published PCR primer sets Xgyr1BF/Xgyr1BR (3) and A1/B1 (1), respectively. Sequence of the gyrB gene (GenBank Accession Nos. JQ665732 to JQ665738) from the zinnia field isolates shared 100% sequence identity with the reference strain of Xanthomonas campestris pv. zinniae (GenBank Accession No. EU285210), and the ITS sequences (GenBank Accession Nos. JQ665725 to JQ665731) had 99.9% sequence identity with X. campestris pv. zinnia XCZ-1 (GenBank Accession No. EF514223). On the basis of the pathogenicity assays, biochemical and physiological tests, and sequence analyses, the isolates were identified as X. campestris pv. zinniae. To our knowledge, this is the first report of bacterial leaf spot of zinnia caused by X. campestris pv. zinniae in Korea. The disease is expected to result in economic and aesthetic losses to plants in Korean landscapes. Thus, seed treatment with bactericides will be required to control the bacterial leaf spot of zinnia before planting. References: (1) T. Barry et al. The PCR Methods Appl. 1:51, 1991. (2) N. W. Schaad et al. Page 189 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al., eds. The American Phytopathological Society, St. Paul, MN, 2001. (3) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.


Plant Disease ◽  
2002 ◽  
Vol 86 (2) ◽  
pp. 186-186 ◽  
Author(s):  
M. L. Lewis Ivey ◽  
S. Wright ◽  
S. A. Miller

In 2000, circular water-soaked lesions typical of bacterial leaf spot were observed on leaves of collards (Brassica oleracea L. var. viridis) throughout commercial fields in northwest Ohio. Light brown, rectangular, water-soaked lesions were observed on turnip leaves (Brassica rapa L.). Bacterial streaming from lesions on both crops was observed microscopically. Cream colored, fluorescent colonies were isolated from diseased tissues on Pseudomonas F medium, and eight representative colonies (four from collards and four from turnip) were selected and purified. Fatty acid methyl ester analysis was performed on all of the isolates. Two from collards and two from turnip were identified as Pseudomonas syringae pv. maculicola (mean similarity index = 0.82 [MIDI Inc., Newark, DE]). DNA extracts from pure cultures of the P. syringae pv. maculicola strains were used as template in a polymerase chain reaction (PCR) assay with primers derived from the region of the coronatine gene cluster controlling synthesis of the coronafacic acid moiety found in P. syringae pv. tomato and P. syringae pv. maculicola (CorR and CorF2) (D. Cuppels, personal communication). DNA from P. syringae pv. tomato strain DC3000 and P. syringae pv. maculicola strain 88–10 (2) served as positive controls, while water and DNA from Xanthomonas campestris pv. vesicatoria strain Xcv 767 were used as negative controls. The expected 0.65-kb PCR product was amplified from three of four strains (two from turnip and one from collards) and the positive control DNA, but not from the negative controls. Pathogenicity tests were performed twice on 6-week-old turnip (‘Forage Star’, ‘Turnip Topper’, ‘Turnip Alamo’, ‘Turnip 7’), collard (‘Champion’) and mustard (Brassica juncea L. ‘Southern Giant Curl’) seedlings using the three PCR-positive strains. Premisted seedlings were spray-inoculated separately with each of the three strains (2 × 108 CFU/ml, 5 ml per plant) and a water control. Greenhouse temperatures were maintained at 20 ± 1°C. For both tests, all strains caused characteristic lesions on all of the crucifer cultivars within 5 days after inoculation; the control plants did not develop symptoms. To satisfy Koch's postulates, one of the turnip strains was reisolated from ‘Turnip Topper’ plants, and the collard strain was reisolated from ‘Champion’ plants. The three original and two reisolated strains induced a hypersensitive response in Mirabilis jalapa L. and Nicotiana tabacum L. var. xanthia plants 24 h after inoculation with a bacterial suspension (1 × 108 CFU/ml). The original and reisolated strains were compared using rep-PCR with the primer BOXA1R (1). The DNA fingerprints of the reisolated strains were identical to those of the original strains. To our knowledge, this is the first report of bacterial leaf spot on commercially grown collards and turnip greens in Ohio. References: (1) B. Martin et al. Nucleic Acids Res. 20:3479, 1992. (2) R. A. Moore et al. Can. J. Microbiol. 35:910, 1989.


2021 ◽  
Vol 1 (25) ◽  
pp. 174-186
Author(s):  
S.I. Prikhodko ◽  
◽  
A.B. Yaremko ◽  
K.P. Kornev ◽  
◽  
...  

Pseudomonas syringae pv. maculicola (McCulloch) Young et al. is a pathogen of cauliflower bacterial spot that affects many plants of the Cruciferae family. The need for quality diagnostics of this species arose due to the mandatory phytosanitary inspection of places of production of plant products intended for export. Our research aims at determining a set of methods for the diagnosis of the pathogen of cauliflower bacterial leaf spot and evaluating these methods’ applicability in laboratory practice. The object of the research is P. syringae pv. maculicola – the causative agent of cauliflower bacterial leaf spot.The article presents the test results of two methods for the identification of Pseudomonas syringae pv. maculicola (McCulloch) Young et al. carried out in 2020 at the All-Russian Plant Quarantine Center (VNIIKR). The first method is based on the determination of biochemical properties using the API 20E test kit produced by bioMérieux’s (France); the second one – is a conventional PCR. The type bacterial strain CFBP 1657 obtained by specialists of the All-Russian Plant Quarantine Center (VNIIKR) from French collection of plant-associated bacteria (Cirm-CFBP) was used in the studies. A comparison of the biochemical properties of 23 bacteria of the genus Pseudomonas showed that there are only two characteristics within this test that distinguish P. s. pv. maculicola from other species pathovars: acetoin products and gelatin hydrolysis. Two pairs of primers with different targets in the P. syringae genome were also tested. PCR with PsyF/PsyR primers demonstrated the highest similarity of the obtained fragments with the NCBI database (97.2 %). The analytical sensitivity of PCR with PsyF/PsyR primers in plant and seed extracts was 105 CFU/ml. Determination of analytical specificity with 33 bacterial strains of the genus Pseudomonas revealed cross-reactions with strains of the following species: P. congelans, P. savastanoi pv. phaseolicola, P. savastanoi pv. glycinea, P. syringae pv. coronafaciens, P. syringae pv. syringae. Thus, to differentiate the species by means of PCR with PsyF/PsyR primers, the nucleotide sequence of the obtained amplification products should be additionally determined by Sanger sequencing.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lei Li ◽  
Yishuo Huang ◽  
Yanxia Shi ◽  
A LI CHAI ◽  
Xuewen Xie ◽  
...  

Coriander (Coriandrum sativum L.) or Chinese parsley is a culinary herb with multiple medicinal effects that are widely used in cooking and traditional medicine. From September to November 2019, symptoms were observed in 2-month-old coriander plants from coriander fields in Lanzhou and Wenzhou, China. The disease developed rapidly under cold and wet climatic conditions, and the infection rate was almost 80% in open coriander fields. Typical symptoms on leaves included small, water-soaked blotches and irregular brown spots surrounding haloes; as the disease progressed, the spots coalesced into necrotic areas. Symptomatic leaf tissue was surface sterilized, macerated in sterile distilled water, and cultured on nutrient agar plates at 28 °C for 48 h (Koike and Bull, 2006). After incubation, six bacterial colonies, which were individually isolated from collected samples from two different areas, were selected for further study. Colonies on NA plate were small, round, raised, white to cream-colored, and had smooth margins. All bacterial isolates were gram-negative, rod-shaped and nonfluorescent on King's B medium. The bacteria were positive for levan production, Tween 80 hydrolysis, and tobacco hypersensitivity but negative for oxidase, potato slice rot test, arginine dihydrolase, ice nucleation activity, indole production and H2S production. The suspension of representative isolate for inoculating of plants was obtained from single colony on King's B medium for 2-3 days at 28 °C. DNA was extracted from bacterial suspensions of YS2003200102 cultured in 20 ml of King’s B medium broth at 28 °C for 1 day. Extraction was performed with a TIANamp Bacterial DNA Kit (TIANGEN, China) according to the manufacturer’s recommendations. The pathogen was confirmed by amplification and sequencing of the glyceraldehyde-3-phosphate dehydrogenase A (gapA) gene, the citrate synthase (gltA) gene, the DNA gyrase B (gyrB) gene and the RNA polymerase sigma factor 70 (rpoD) gene using gapA-For/gapA-Rev, gltA-For/gltA-Rev, gyrB-For/gryB-Rev, rpoD-For/rpoD-Rev primers, respectively (Popović et al., 2019). The sequences of the PCR products were deposited in GenBank with accession numbers MZ681931 (gapA), MZ681932 (gltA), MZ681933 (gyrB), and MZ681934 (rpoD). Phylogenetic analysis of multiple genes (Xu and Miller, 2013) was conducted with the maximum likelihood method using MEGA7. The sequences of our isolates and ten published sequences of P. syringae pv. coriandricola were clustered into one clade with a 100% confidence level. To confirm the pathogenicity of isolate YS2003200102, 2-month-old healthy coriander plants were inoculated by spraying the leaves with a bacterial suspension (108 CFU ml−1) at 28 °C incubation temperature and 70% relative humidity condition, and sterile distilled water was applied as a negative control treatment (Cazorla et al. 2005). Three replicates were conducted for every isolate, and each replicate included 6 coriander plants. After twelve days, only the inoculated leaves with bacterial suspension showed bacterial leaf spot resembling those observed on naturally infected coriander leaves. Cultures re-isolated from symptomatic leaves showed the same morphological characteristics and molecular traits as those initially isolated from infected leaves in the field. This bacterium was previously reported causing leaf spot of coriander in India and Spain (Gupta et al. 2013; Cazorla et al. 2005). To our knowledge, this is the first report of P. syringae pv. coriandricola causing leaf spot disease on coriander in China. Studies are needed on strategies to manage P. syringae pv. coriandricola in crops, because its prevalence may cause yield loss on coriander in China.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1397-1397 ◽  
Author(s):  
S. T. Koike ◽  
D. M. Henderson ◽  
C. T. Bull ◽  
P. H. Goldman ◽  
R. T. Lewellen

From 1999 through 2003, a previously unreported disease was found on commercial Swiss chard (Beta vulgaris subsp. cicla) in the Salinas Valley, (Monterey County) California. Each year the disease occurred sporadically throughout the long growing season from April through September. Initial symptoms were water-soaked leaf spots that measured 2 to 3 mm in diameter. As disease developed, spots became circular to ellipsoid, 3 to 8 mm in diameter, and tan with distinct brown-to-black borders. Spots were visible from the adaxial and abaxial sides. Cream-colored bacterial colonies were consistently isolated from spots. Strains were fluorescent on King's medium B, levan positive, oxidase negative, and arginine dihydrolase negative. Strains did not rot potato slices but induced a hypersensitive reaction on tobacco (Nicotiana tabacum cv. Turk). The isolates, therefore, belong in LOPAT group 1 (1). Fatty acid methyl esters (FAME) analysis (MIS-TSBA version 4.10, MIDI Inc., Newark, DE) gave variable results that included Pseudomonas syringae, P. cichorii, and P. viridiflava with similarity indices ranging from 0.91 to 0.95. BOX-polymerase chain reaction (PCR) analysis gave identical banding patterns for the chard isolates and for known P. syringae pv. aptata strains, including the pathotype strain CFBP1617 (2). The bacteria were identified as P. syringae. Pathogenicity of 11 strains was tested by growing inoculum in nutrient broth shake cultures for 48 h, diluting to 10 × 6 CFU/ml, and spraying onto 5-week-old plants of Swiss chard cvs. Red, White, Silverado, and CXS2547. Untreated control plants were sprayed with sterile nutrient broth. After 7 to 10 days in a greenhouse (24 to 26°C), leaf spots similar to those observed in the field developed on all inoculated plants. Strains were reisolated from the spots and identified as P. syringae. Control plants remained symptomless. To investigate the host range of this pathogen, the same procedures were used to inoculate three strains onto other Chenopodiaceae plants: five cultivars of sugar beet (B. vulgaris), and one cultivar each of spinach (Spinacia oleracea) and Swiss chard. In addition, five chard strains and strain CFBP1617 were inoculated onto two cultivars of sunflower (Helianthus annuus), and one cultivar each of cantaloupe (Cucumis melo), sugar beet, spinach, and Swiss chard. All Swiss chard, cantaloupe, sunflower, and sugar beet plants developed leaf spots after 7 days. The pathogen was reisolated from spots and confirmed to be the same bacterium using BOX-PCR analysis. Spinach and untreated controls failed to show symptoms. All inoculation experiments were done at least twice and the results were the same. The phenotypic data, fatty acid and genetic analyses, and pathogenicity tests indicated that these strains are P. syringae pv. aptata. To our knowledge this is the first report of bacterial leaf spot of commercially grown Swiss chard in California caused by P. syringae pv. aptata. The disease was particularly damaging when it developed in Swiss chard fields planted for “baby leaf” fresh market products. Such crops are placed on 2-m wide beds, planted with high seed densities, and are sprinkler irrigated. This disease has been reported from Asia, Australia, Europe, and other U.S. states. References: (1) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (2) J. L. W. Rademaker et al. Mol. Microbiol. Ecol. Man. 3.4.3:1–27, 1998.


Plant Disease ◽  
2006 ◽  
Vol 90 (2) ◽  
pp. 245-245 ◽  
Author(s):  
S. T. Koike ◽  
C. T. Bull

Italian dandelion (Cichorium intybus) is a leafy, nonhead forming chicory plant that is eaten as a fresh vegetable in salads. During the late summer (August through October) of 2002, in the Salinas Valley (Monterey County) in California, a previously unreported disease was found in commercial Italian dandelion fields. Early symptoms were angular, vein delimited, dark, water-soaked leaf spots that measured 2 to 7 mm in diameter. As disease developed, spots retained angular edges but exhibited various irregular shapes. Spots commonly formed along the edges of the leaves; in some cases these spots developed into lesions that measured between 10 and 30 mm long. Spots were visible from adaxial and abaxial sides and were dull black in color. A cream-colored pseudomonad was consistently isolated from leaf spots that were macerated and streaked onto sucrose peptone agar. Fungi were not recovered from any of the spots. Recovered strains were blue-green fluorescent when streaked onto King's medium B agar. Bacterial strains were levan positive, oxidase negative, and arginine dihydrolase negative. Strains did not rot potato slices but induced a hypersensitive reaction on tobacco (Nicotiana tabacum cv. Turk). These data indicated that the bacteria belonged to LOPAT group 1 of Pseudomonas syringae (1). Pathogenicity of six strains was tested by growing inoculum in nutrient broth shake cultures for 48 h, diluting to 106 CFU/ml, and spraying onto 12 6-week-old plants of Italian dandelion cv. Catalogna Special. Untreated control plants were sprayed with sterile nutrient broth. After 10 to 12 days in a greenhouse (24 to 26°C), leaf spots similar to those observed in the field developed on all inoculated plants. Strains were reisolated from the spots and identified as P. syringae. Control plants remained symptomless. These inoculation experiments were done twice and the results were the same. Amplification of repetitive bacterial sequences (repetitive sequence-based polymerase chain reaction [rep-PCR]) demonstrated that all Italian dandelion strains had the same rep-PCR fingerprint, which differed from fingerprints of P. syringae pv. tagetis and P. syringae pv. tabaci. Additionally, toxin specific primers did not amplify tagetitoxin or tabtoxin biosynthesis genes from Italian dandelion strains. To our knowledge, this is the first report of bacterial leaf spot of commercially grown Italian dandelion in California caused by a P. syringae pathovar. Because fields were irrigated with overhead sprinklers, the disease was severe in several fields and as much as 30% of those plantings were not harvested. Reference: (1) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 416-416 ◽  
Author(s):  
T. Popović ◽  
Ž. Ivanović ◽  
M. Ignjatov ◽  
D. Milošević

During the spring of 2014, a severe leaf spot disease was observed on carrot (Daucus carota), parsley (Petroselinum crispum), and parsnip (Pastinaca sativa) on a 0.5-ha vegetable farm in Vojvodina Province, Serbia. The disease appeared under wet and cool conditions with 5 to 25% of plants infected for each of the three crops. Symptoms were characterized as brown angular leaf spots, ~2 mm in diameter, often limited by veins. Collected symptomatic leaves were rinsed and dried at room temperature, and leaf sections taken from the margin of necrotic tissue were macerated in sterile phosphate buffer and streaked onto nutrient agar with 5% (w/v) sucrose (NAS). After isolation, whitish, circular, dome-shaped, Levan-positive colonies consistently formed. Five strains from each host (carrot, parsley, and parsnip) were used for further study. Strains were gram-negative, aerobic, and positive for catalase and tobacco hypersensitive reaction but negative for oxidase, rot of potato slices, and arginine dihydrolase. These reactions corresponded to LOPAT group Ia, which includes Pseudomonas syringae pathovars (3). Repetitive extragenic palindromic sequence (Rep)-PCR fingerprint profiles using the REP, ERIC, and BOX primers (4) were identical for all strains. Sequence typing of the housekeeping genes gyrB and rpoD (1) was performed for three representative strains (one from each host). Sequences were deposited in the NCBI GenBank database as accessions KM979434 to KM979436 (strains from carrot, parsnip, and parsley, respectively) for the gyrB gene and KM979437 to KM979439 (strains from parsnip, parsley and carrot, respectively) for the rpoD gene. Sequences were compared with pathotype strain Pseudomonas syringae pv. coriandricola ICMP12471 deposited in the Plant Associated and Environmental Microbes Database ( http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl ). BLAST analysis revealed 100% homology for gyrB and 99% homology for rpoD. Pathogenicity was tested with five representative strains from each host on four-week-old plants of carrot (cv. Nantes), parsley (cv. NS Molski), and parsnip (cv. Dugi beli glatki) using two methods: spraying the bacterial suspension (108 CFU ml−1) on the leaves until runoff (5) and injecting the bacterial suspension into leaves with a hypodermic syringe (2). Four plants were used per strain and method. Sterile distilled water was applied as a negative control treatment for each plant species. All plants were kept in a mist room with 100% humidity for 4 h, then transferred to a greenhouse at 25°C and 80% relative humidity and examined for symptom development over a period of three weeks. For all strains, inoculated leaves first developed water-soaked lesions on the leaves 5 to 7 days after inoculation (DAI); 14 DAI lesions became dark brown, often surrounded by haloes. No symptoms were observed on control plants inoculated with sterile distilled water. For fulfillment of Koch's postulates, re-isolations were done onto NAS. Re-isolated bacteria were obtained from each inoculated host and confirmed to be identical to the original isolates using the LOPAT tests and Rep-PCR fingerprinting profiles. Based on the pathogenicity test accompanied by completion of Koch's postulates, sequence analysis, and bacteriological tests, the strains were identified as P. s. pv. coriandricola. To our knowledge, this is the first report of bacterial leaf spot of carrot, parsley, and parsnip in Serbia. It may present a threat to production due to quality requirements for fresh market. References: (1) P. Ferrente and M. Scortichini. Plant Pathol. 59:954, 2010. (2) M. Gupta et al. Plant Dis. 97:418, 2013. (3) R. A. Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (4) F. J. Louws et al. Appl. Environ. Microb. 60:2286, 1994. (5) X. Xu and S. A. Miller. Plant Dis. 97:988, 2013.


Sign in / Sign up

Export Citation Format

Share Document