Resistance to Potassium Phosphite in Phytophthora Species Causing Citrus Brown Rot and Integrated Practices for Management of Resistant Isolates

Plant Disease ◽  
2020 ◽  
Author(s):  
Wei Hao ◽  
Helga Forster ◽  
James Adaskaveg

Phytophthora citrophthora, P. syringae, P. nicotianae, and less commonly P. hibernalis are causal agents of brown rot of citrus fruit in California. The chronic disease occurs during the winter season, requires seasonal management, and has limited California citrus exports due to quarantines in some markets. Potassium phosphite (KPO3) is registered as a pre- and postharvest fungicide in the United States to manage Phytophthora brown rot. We evaluated the in vitro toxicity of KPO3 to 65, 60, and 38 isolates of P. citrophthora, P. syringae, and P. nicotianae, respectively, that were obtained from major growing regions of California. Frequency distributions of effective concentrations to inhibit mycelial growth by 50% (EC50 values) were not normally distributed with skewness values of 1.84, 1.60, and -0.51 for each species, respectively. Isolates considered sensitive (EC50 values <25 µg/ml), moderately resistant (EC50 values 25 to 75 µg/ml), or resistant (EC50 values >75 µg/ml) were identified for each species. The majority of P. citrophthora (83.1%) and P. syringae (78.3%) isolates were sensitive, whereas most P. nicotianae isolates (86.8%) were moderately resistant or resistant. Resistance factors were calculated as 65, 19, and 10 for the three species, respectively. In preharvest field trials, KPO3 (2,280 g/ha) applications were not effective in reducing citrus brown rot incidence when orange fruit were inoculated with a resistant (EC50 = 161.9 µg/ml) isolate of P. citrophthora demonstrating the potential for field resistance. Oxathiapiprolin (32.6 g/ha), however, was highly effective indicating the absence of multi-drug resistance. Postharvest treatments with KPO3 were only effective in reducing brown rot caused by the resistant isolate of P. citrophthora to a low incidence when high rates (8,000 µg/ml) were used in heated (54°C) applications. The sensitive and moderately resistant isolates were managed using rates of 4,000 µg/ml, but heated treatments at this rate were needed to reduce brown rot to commercially acceptable levels when decay was caused by a moderately resistant isolate.

Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2024-2032 ◽  
Author(s):  
Rodger J. Belisle ◽  
Wei Hao ◽  
Brandon McKee ◽  
Mary Lu Arpaia ◽  
Patricia Manosalva ◽  
...  

Phytophthora root rot (PRR), caused by Phytophthora cinnamomi, is the most destructive disease of avocado worldwide. In the United States, mefenoxam and phosphonate products are currently the only registered fungicides for managing avocado PRR. Four new Oomycota-specific and two registered fungicides, all with different modes of action, were evaluated. Seventy-one isolates of P. cinnamomi from avocado in California, most of them collected between 2009 to 2017, were tested for their in vitro sensitivity to the six fungicides. Baseline sensitivity ranges and mean values (in parentheses) of effective concentrations to inhibit mycelial growth by 50% (EC50) for the new fungicides ethaboxam, fluopicolide, mandipropamid, and oxathiapiprolin were 0.017 to 0.069 μg/ml (0.035), 0.046 to 0.330 μg/ml (0.133), 0.003 to 0.011 μg/ml (0.005), and 0.0002 to 0.0007 μg/ml (0.0004), respectively. In comparison, the EC50 value range (mean) was 0.023 to 0.138 μg/ml (0.061) for mefenoxam and 12.9 to 361.2 μg/ml (81.5) for potassium phosphite. Greenhouse soil inoculation trials with 8-month-old Zutano seedlings and 10-month-old Dusa and PS.54 clonal rootstocks were conducted to assess the efficacy of these fungicides for managing PRR. Mefenoxam and potassium phosphite were effective treatments; however, oxathiapiprolin, fluopicolide, and mandipropamid were more effective. Ethaboxam was effective in reducing PRR on the rootstocks evaluated. Oxathiapiprolin reduced PRR incidence and pathogen population size in the soil by >90%, and plant shoot growth and root dry weight were significantly increased compared with the control; thus, oxathiapiprolin was one of the best treatments overall. The high activity and performance of these new fungicides supports their registrations on avocado for use in rotation and mixture programs, including with previously registered compounds, to reduce the risk of development and spread of resistance in pathogen populations.


Plant Disease ◽  
2015 ◽  
Vol 99 (11) ◽  
pp. 1477-1482 ◽  
Author(s):  
J. E. Adaskaveg ◽  
W. Hao ◽  
H. Förster

Phytophthora brown rot, caused by several species of Phytophthora, is an economically important disease of citrus in areas with rainfall during the late stages of fruit development. Recent export restrictions of California orange fruit to China due to the presence of brown rot caused by the quarantine pathogen Phytophthora syringae have mandated more rigorous disease management. We evaluated postharvest applications with the phosphonate fungicide potassium phosphite in combination with heat treatments. In timing studies, potassium phosphite at 1,500 μg/ml was most effective when applied within 18 h after inoculation of orange fruit with P. citrophthora, reducing the incidence of decay by >96% as compared with the control. Potassium phosphite was also highly effective in inoculations with P. syringae. Heated water treatments at 60°C were consistently and highly effective in reducing the incidence of brown rot after inoculation with P. citrophthora, whereas treatments at 55 or 50°C were more variable and generally less effective. Two-stage treatments of fruit were conducted in the laboratory to simulate current packinghouse practices and to evaluate any interaction of the efficacy of potassium phosphite with treatments of two commonly used postharvest fungicides (i.e., imazalil and thiabendazole [TBZ]) or a postharvest carnauba-based fruit coating. In these studies, an aqueous imazalil-potassium phosphite (2,000 μg/ml) dip at ambient temperature that was followed by a spray treatment of imazalil and TBZ prepared in fruit coating significantly reduced the incidence of brown rot from the control. When the aqueous dip was applied at 54°C, brown rot developed in only 1% of the fruit as compared with 76% in the water control. The efficacy of potassium phosphite was also demonstrated in commercial packinghouse treatments. Based on our research, this fungicide was registered for postharvest use against brown rot of citrus and is exempt from tolerance in the United States and many other countries.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Dolores Fernández-Ortuño ◽  
Fengping Chen ◽  
Guido Schnabel

Chemical control of gray mold of strawberry caused by Botrytis cinerea is essential to prevent pre- and postharvest fruit decay. For more than 10 years, the anilinopyrimidine (AP) cyprodinil and the phenylpyrrole fludioxonil (Switch 62.5WG) have been available to commercial strawberry producers in the United States for gray mold control. Both active ingredients are site-specific inhibitors and, thus, prone to resistance development. In this study, 217 single-spore isolates of B. cinerea from 11 commercial strawberry fields in North and South Carolina were examined for sensitivity to both fungicides. Isolates that were sensitive (53%), moderately resistant (30%), or resistant (17%) to cyprodinil were identified based on germ tube inhibition at discriminatory doses of cyprodinil at 1 and 25 mg/liter at 10 of the 11 locations. None of the isolates was fludioxonil resistant. Phenotypes that were moderately resistant or resistant to cyprodinil were not associated with fitness penalties for mycelial growth rate, spore production, or osmotic sensitivity. Detached fruit assays demonstrated cross resistance between the two AP fungicides cyprodinil and pyrimethanil, and that isolates that were characterized in vitro as moderately resistant or resistant were equivalent in pathogenicity on fruit sprayed with pyrimethanil (currently the only AP registered in strawberry as a solo formulation). This suggests that the in vitro distinction of moderately resistant and resistant isolates is of little if any field relevance. The absence of cross-resistance with fludioxonil, iprodione, cycloheximide, and tolnaftate indicated that multidrug resistance in the form of multidrug resistance phenotypes was unlikely to be involved in conferring resistance to APs in our isolates. Implications for resistance management and disease control are discussed.


Plant Disease ◽  
2003 ◽  
Vol 87 (10) ◽  
pp. 1266-1266 ◽  
Author(s):  
Sabine Werres ◽  
Daphné De Merlier

Since its original isolation in 1993, Phytophthora ramorum has become an important pathogen. Initially, it was determined to be the causal agent of a twig blight of Rhododendron spp. in Germany and the Netherlands (3). Around the same period, symptoms and mortality on oak (Quercus spp.) and tanoak (Lithocarpus densiflorus) were associated with P. ramorum in California (2), where the disease was named sudden oak death. Subsequently, P. ramorum has been detected on a wide range of forest trees and shrub species in the United States. In Europe, the pathogen has spread to many countries, primarily on nursery plants of Rhododendron and Viburnum spp., and recently, on Camellia japonica, Kalmia latifolia, Pieris formosa var. forrestii, P. japonica, Leucothoe sp., Syringa vulgaris, and Taxus baccata. P. ramorum has not been observed in European forests. P. ramorum is heterothallic, and initial in vitro mating studies on agar media suggested that only the A1 mating type occurred in Europe, while only the A2 mating type was present in the United States (4). However, an isolate collected in 2002 in Belgium (1) appears to be the A2 mating type. This isolate (CBS 110901, Centraal Bureau voor Schimmelcultures, Baarn, the Netherlands) originated from an imported V. bodnantense plant at an ornamental nursery. A hyphal tip culture (BBA 26/02) of this isolate produced no oogonia on carrot piece agar after 6 weeks in pairing tests with other Phytophthora species of mating type A2. When paired with mating type A1 of P. cambivora, P. cinnamomi, P. cryptogea, and P. drechsleri, however, oogonia were observed in all pairings within 6 weeks. The number of oogonia was low in all pairings but was highest in pairings with P. cryptogea. No oospores were produced after 6 weeks between P. ramorum isolates BBA 26/02 and BBA 9/95 (from the holotype, mating type A1), but gametangia were observed when these isolates were paired on Rhododendron sp. twigs. Normal oogonia were produced on the outgrowing mycelium when pieces from these twigs were placed on carrot piece agar. The shape and size of the oogonia produced on carrot piece agar after pairing with P. cryptogea and on Rhododendron sp. twigs after pairing with P. ramorum BBA 9/95 were similar (24 to 34 μm, mean 29.6 μm and 25 to 33 μm, mean 30.6 μm, respectively). To our knowledge, this is the first observation of P. ramorum mating type A2 in Europe. References: (1) D. De Merlier et al. Plant Dis. 87:203, 2003. (2) D. M. Rizzo et al. Plant Dis. 86:205, 2002. (3) S. Werres et al. Mycol. Res. 105:1166, 2001. (4) S. Werres and B. Zielke. J. Plant Dis. Prot. 110:129, 2003.


Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


2011 ◽  
Vol 49 (01) ◽  
Author(s):  
SA Hoffmann ◽  
M Lübberstedt ◽  
U Müller-Vieira ◽  
D Knobeloch ◽  
A Nüssler ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 91
Author(s):  
Ghea Dotulong ◽  
Stella Umboh ◽  
Johanis Pelealu

Uji Toksisitas Beberapa Fungisida Nabati terhadap Penyakit Layu Fusarium (Fusarium oxysporum) pada Tanaman Kentang (Solanum tuberosum L.) secara In Vitro (Toxicity Test of several Biofungicides in controlling Fusarium wilt (Fusarium oxysporum) in Potato Plants (Solanum tuberosum L.) by In Vitro) Ghea Dotulong1*), Stella Umboh1), Johanis Pelealu1), 1) Program Studi Biologi, FMIPA Universitas Sam Ratulangi, Manado 95115*Email korespondensi: [email protected] Diterima 9 Juli 2019, diterima untuk dipublikasi 10 Agustus 2019 Abstrak Tanaman kentang (Solanum tuberosum L.) adalah salah satu tanaman hortikultura yang sering mengalami penurunan dari segi produksi dan produktivitasnya, akibat adanya serangan penyakit layu yang salah satunya disebabkan oleh Fusarium oxysporum. Tujuan penelitian ini adalah mengidentifikasi toksisitas beberapa fungisida nabati dalam mengendalikan penyakit Layu Fusarium (F. oxysporum) pada tanaman kentang (Solanum tuberosum L.) secara In Vitro. Metode Penelitian yang digunakan yaitu metode umpan beracun. Data dianalisis dengan Rancangan Acak Lengkap (RAL) dengan Analisis Varian (ANAVA) yang dilanjutkan dengan menggunakan metode BNT (Beda Nyata Terkecil). Hasil Penelitian, diperoleh nilai toksisitas fungisida nabati tertinggi yaitu pada ekstrak daun sirsak dengan nilai HR (69,44%), kategori berpengaruh, ditandai dengan diameter koloni 2,75 cm (100ppm) dan yang terendah toksisitasnya yaitu pada ekstrak daun jeruk purut dengan nilai HR (49,81%), kategori cukup berpengaruh ditandai dengan diameter koloni 3,75 cm (25ppm). Semakin tinggi konsentrasi yang diujikan maka semakin tinggi toksisitas dari fungisida nabati yang diberikan.Kata Kunci: fungisida nabati, Fusarium oxysporum, tanaman kentang, In Vitro Abstract Potato plants (Solanum tuberosum L.) is one of the horticulture plants which often decreases in terms of production and productivity, due to the attack of wilt, one of which is caused by Fusarium oxysporum. The purpose of this study was to determine the toxicity of several biofungicides in controlling Fusarium wilt (F. oxysporum) in potato plants (Solanum tuberosum L.) in Vitro. The research method used was the In Vitro method with the poison bait method. Data were analyzed by Completely Randomized Design with Variant Analysis (ANAVA), followed by the BNT method. The results showed that the highest biofungicide toxicity value was soursop leaf extract with HR values (69.44%), influential categories, characterized by colony diameter 2.75 cm (100ppm) and the lowest toxicity, namely in kaffir lime leaf extract with a value of HR (49.81%), quite influential category was characterized by colony diameter of 3.75 cm (25ppm). The higher the concentration tested, the higher the toxicity of the biofungicide given.Keywords: biofungicides, Fusarium oxysporum, Potato Plants, In Vitro.


2018 ◽  
Vol 24 (9) ◽  
pp. 989-992 ◽  
Author(s):  
Samir Gorasiya ◽  
Juliet Mushi ◽  
Ryan Pekson ◽  
Sabesan Yoganathan ◽  
Sandra E. Reznik

Background: Preterm birth (PTB), or birth that occurs before 37 weeks of gestation, accounts for the majority of perinatal morbidity and mortality. As of 2016, PTB has an occurrence rate of 9.6% in the United States and accounts for up to 18 percent of births worldwide. Inflammation has been identified as the most common cause of PTB, but effective pharmacotherapy has yet to be developed to prevent inflammation driven PTB. Our group has discovered that N,N-dimethylacetamide (DMA), a readily available solvent commonly used as a pharmaceutical excipient, rescues lipopolysaccharide (LPS)-induced timed pregnant mice from PTB. Methods: We have used in vivo, ex vivo and in vitro approaches to investigate this compound further. Results: Interestingly, we found that DMA suppresses cytokine secretion by inhibiting nuclear factor-kappa B (NF-κB). In ongoing work in this exciting line of investigation, we are currently investigating structural analogs of DMA, some of them novel, to optimize this approach focused on the inflammation associated with PTB. Conclusion: Successful development of pharmacotherapy for the prevention of PTB rests upon the pursuit of multiple strategies to solve this important clinical challenge.


Sign in / Sign up

Export Citation Format

Share Document