scholarly journals High Potassium, Calcium, and Nitrogen Application Reduce Susceptibility to Banana Xanthomonas Wilt Caused by Xanthomonas campestris pv. musacearum

Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Margaret Atim ◽  
Fen Beed ◽  
Geoffrey Tusiime ◽  
Leena Tripathi ◽  
Piet van Asten

The effect of exogenous applications of potassium (K), calcium (Ca), and nitrogen (N) on the susceptibility of four banana cultivars to Banana Xanthomonas wilt (BXW) was studied. Murashige and Skoog (MS) medium with normal concentrations of K at 783 mg/liter, Ca at 121 mg/liter, and N at 841 mg/liter was modified to contain various concentrations of K, Ca, and N. Each nutrient was varied singly, each with three replicate experiments. The concentrations were K at 78, 157, 391, 783, 1,565, and 3,913 mg/liter; Ca at 12, 24, 60, 121, 241, and 603 mg/liter; and N at 84, 168, 420, 841, and 1,682 mg/liter. Plantlets were generated in vitro on normal MS medium and later exposed to the nutrient concentrations for a total of 8 weeks. Thereafter, they were artificially inoculated with Xanthomonas campestris pv. musacearum using an insulin syringe. In each nutrient, plantlets exposed to higher nutrient concentrations significantly (P < 0.0001) accumulated more nutrient in their tissues compared with those exposed to lesser nutrient concentrations. Wilt incidences were significantly reduced, and incubation periods (time from inoculation to appearance of first disease symptoms) increased, with increasing nutrient application. The study lays a background for in vivo studies aimed at management of BXW using nutrients, such as fertilizer application.

1977 ◽  
Vol 23 (6) ◽  
pp. 710-715 ◽  
Author(s):  
Brian Austin ◽  
Colin H. Dickinson ◽  
Michael Goodfellow

Strains of Listeria denitrificans (E2), Psendomonas fluorescens (C37 and C92), and Xanthomonas campestris (D119), isolated from the phylloplane of Lolium perenne (S24), were antagonistic to Drechslera dictyoides (Drechsler) Shoemaker. From in vitro and in vivo experiments it was deduced that their mode of activity included an initial inhibition of spore germination, a retardation in the rate of germ-tube elongation, and ultimately lysis of the hyphae. The effects were expressed on the plant in terms of reduced levels of disease symptoms and sporulation.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Sign in / Sign up

Export Citation Format

Share Document