scholarly journals Comprehensive Sclerotinia Stem Rot Screening of Soybean Germplasm Requires Multiple Isolates of Sclerotinia sclerotiorum

Plant Disease ◽  
2017 ◽  
Vol 101 (2) ◽  
pp. 344-353 ◽  
Author(s):  
J. F. Willbur ◽  
S. Ding ◽  
M. E. Marks ◽  
H. Lucas ◽  
C. R. Grau ◽  
...  

Sclerotinia sclerotiorum population variability directly affects Sclerotinia stem rot (SSR) resistance breeding programs. In the north-central United States, however, soybean germplasm selection has often involved only a single isolate. Forty-four S. sclerotiorum isolates from Illinois, Michigan, Minnesota, Nebraska, Wisconsin, Poland, and across 11 different host species were evaluated for variation in isolate in vitro growth, in vitro oxalate production, and in planta aggressiveness on the susceptible soybean ‘Williams 82’. Significant differences (P < 0.0001) were detected in isolate in planta aggressiveness, in vitro growth, and in vitro oxalate production. Furthermore, diverse isolate characteristics were observed within all hosts and locations of collection. Aggressiveness was not correlated to colony growth and was only weakly correlated (r = 0.26, P < 0.0001) to isolate oxalate production. In addition, the host or location of collection did not explain isolate aggressiveness. Isolate oxalic acid production, however, may be partially explained by the host (P < 0.05) and location (P < 0.01) of collection. Using a representative subset of nine S. sclerotiorum isolates and soybean genotypes exhibiting susceptible or resistant responses (determined using a single isolate), a significant interaction (P = 0.04) was detected between isolates and genotypes when SSR severity was evaluated. Our findings suggest that screening of S. sclerotiorum-resistant soybean germplasm should be performed with multiple isolates to account for the overall diversity of S. sclerotiorum isolates found throughout the soybean-growing regions of the United States.

Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 26-31 ◽  
Author(s):  
D. S. Mueller ◽  
A. E. Dorrance ◽  
R. C. Derksen ◽  
E. Ozkan ◽  
J. E. Kurle ◽  
...  

Sclerotinia stem rot of soybean, caused by Sclerotinia sclerotiorum, is a major disease in the north central region of the United States. One approach to managing Sclerotinia stem rot on soybean is the use of fungicides. S. sclerotiorum was assayed for sensitivity to benomyl, tebuconazole, thiophanate methyl, and vinclozolin in pure cultures on agar medium, inoculated soybean seedlings, detached inoculated leaves, and in experimental field plots. To evaluate the inhibitory effect of four fungicides on growth of S. sclerotiorum in vitro, potato dextrose agar (PDA) was amended with the fungicides at six concentrations. Based on measurements of fungal radial growth, vinclozolin was the most effective in inhibiting S. sclerotiorum mycelial growth at 1.0 μg a.i./ml of PDA. Ranges of reduction of radial growth of 91 isolates of S. sclerotiorum on PDA amended with thiophanate methyl and vinclozolin were 18 to 93% and 93 to 99%, respectively, when compared with the nonamended agar control. Benomyl, thiophanate methyl, and vinclozolin applied to greenhouse-grown seedlings prevented S. sclerotiorum from expressing symptoms or signs on leaf tissue. Detached leaves sprayed with thiophanate methyl and then inoculated with mycelial plugs of S. sclerotiorum did not express symptoms or signs. Of 13 different environments in Illinois, Indiana, Ohio, and Wisconsin from 1995 through 2000, six had low Sclerotinia stem rot incidence (<1%), three environments had low to moderate Sclerotinia stem rot incidence (5 to 25%), and four environments had high Sclerotinia stem rot incidence (>25%). When disease incidence was high, no consistent control of Sclerotinia stem rot was observed with benomyl or thiophanate methyl using different application systems. However, under low disease incidence, spray systems that were able to penetrate the canopy reduced the incidence of Sclerotinia stem rot an average of 50%.


Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 673-673
Author(s):  
J. Strauss ◽  
H. R. Dillard

Hibiscus trionum L. (Venice mallow) is an annual weed widely distributed in the United States. In September of 2008, Venice mallow plants with bleached stems and necrotic tissues were observed in a commercial field of cabbage (Brassica oleracea L. cv. Moreton) in Geneva, NY. White, cottony mycelium and dark sclerotia were readily found on the stems and in the stem pith. Cabbage plants in direct contact with diseased Venice mallow also displayed signs and symptoms of infection by Sclerotinia sclerotiorum (Lib.) de Bary. Sclerotia from within diseased Venice mallow stems were placed in 9-cm-diameter petri plates on potato dextrose agar amended with 0.1 g/liter each of chloramphenicol and streptomycin (ABPDA) and incubated at room temperature. In addition, diseased stem tissue was surface disinfested for 3 min in 0.525% sodium hypochlorite solution, rinsed for 3 min in sterile distilled water, and placed on ABPDA. After 5 days, hyphae from the colony margin were excised and transferred to potato dextrose agar (PDA) plates. Fungal cultures consisting of white mycelia and medium-sized (~4 mm), black, irregular sclerotia were consistently recovered and identified as S. sclerotiorum based on morphological characteristics (1). Pathogenicity of two isolates (one from a sclerotium and one from stem tissue) was determined by inoculating seven 43-day-old Venice mallow plants growing in greenhouse pots (65 mm in diameter). Mycelia plugs (7 mm in diameter) were excised from 2-day-old PDA cultures of each isolate and placed on the stems at the soil line. Seven control plants were inoculated with noncolonized PDA plugs. All plants were enclosed in plastic bags for 72 h and placed under shade in the greenhouse with temperatures from 20 to 38°C (average 27°C). Symptoms similar to those observed in the affected fields were evident within 2 days after inoculation, while control plants remained symptomless. S. sclerotiorum was successfully recovered from infected plant tissue, fulfilling Koch's postulates. The experiment was repeated with similar results. To our knowledge, this is the first report of Sclerotinia stem rot of Hibiscus trionum caused by S. sclerotiorum (2,3). References: (1) L. Buchwaldt. Sclerotinia White Mold. Page 43 in: Compendium of Brassica Diseases, 1st ed. S. R. Rimmer et al., eds. The American Phytopathological Society, St. Paul, MN, 2007. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, MN, 1989. (3) C. Wehlburg et al. Index of Plant Diseases in Florida. Fla Dep. Agric. Consum. Serv. Bull. 11, 1975.


2010 ◽  
Vol 11 (1) ◽  
pp. 5 ◽  
Author(s):  
Stephen R. Koenning ◽  
J. Allen Wrather

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of the losses caused by various soybean diseases is essential when prioritizing research budgets. The objective of this project was to compile estimates of soybean yield potential losses caused by diseases for each soybean producing state in the United States from 2006 to 2009. This data is of special interest since the 4-year period summarized in this report, permits an examination of the impact of soybean rust that was first reported in the United States in 2004. Thus, in addition to the goal of providing this information to aid funding agencies and scientists in prioritizing research objectives and budgets, an examination of the impact of soybean rust on soybean yield losses relative to other diseases is warranted. Yield losses caused by individual diseases varied among states and years. Soybean cyst nematode caused more yield losses than any other disease during 2006 to 2009. Seedling diseases, Phytophthora root and stem rot, sudden death syndrome, Sclerotinia stem rot, and charcoal rot ranked in the top six of diseases that caused yield loss during these years. Soybean yield losses due to soybean rust and Sclerotinia stem rot varied greatly over years, especially when compared to other diseases. Accepted for publication 21 October 2010. Published 22 November 2010.


Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 969-975 ◽  
Author(s):  
Congying Xu ◽  
Xiaoyu Liang ◽  
Yiping Hou ◽  
Mingguo Zhou

We determined the effects and efficacy of benzothiostrobin, a new strobilurin-derived fungicide, against the plant-pathogenic fungus Sclerotinia sclerotiorum (the causal agent of Sclerotinia stem rot). Mycelial growth and sclerotial germination in vitro were strongly inhibited by benzothiostrobin in the presence of salicylhydroxamic acid. On detached rapeseed leaves, benzothiostrobin at 40 μg/ml reduced lesion development by 87%. No cross-resistance was detected between benzothiostrobin and carbendazim, iprodione, fludioxonil, or boscalid. A formulated mixture of benzothiostrobin and fluazinam at 1:1 had synergistic activity against S. sclerotiorum in vitro. In field trials, benzothiostrobin alone or formulated with fluazinam at 1:1 (150 g a.i. ha−1) was significantly (P < 0.05) superior to iprodione in controlling Sclerotinia stem rot of rapeseed. These results suggest that benzothiostrobin has substantial potential for the control of Sclerotinia stem rot.


Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1048-1058 ◽  
Author(s):  
A. L. Mila ◽  
A. L. Carriquiry ◽  
J. Zhao ◽  
X. B. Yang

Regional prevalence of soybean Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, was modeled using management practices (tillage, herbicide, manure and fertilizer application, and seed treatment with fungicide) and summer weather variables (mean monthly air temperature and precipitation for the months of June, July, August, and September) as inputs. Logistic regression analysis was used to estimate the probability of stem rot prevalence with disease data from four states in the north-central region of the United States (Illinois, Iowa, Minnesota, and Ohio). Goodness-of-fit criteria indicated that the resulting model explained well the observed frequency of occurrence. The relationship of management practices and weather variables with soybean yield was examined using multiple linear regression (R 2 = 0.27). Variables significant to SSR prevalence, including average air temperature during July and August, precipitation during July, tillage, seed treatment, liquid manure, fertilizer, and herbicide applications, were also associated with high attainable yield. The results suggested that SSR occurrence in the north-central region of the United States was associated with environments of high potential yield. Farmers' decisions about SSR management, when the effect of management practices on disease prevalence and expected attainable yield was taken into account, were examined. Bayesian decision procedures were used to combine information from our model (prediction) with farmers' subjective estimation of SSR incidence (personal estimate, based on farmers' previous experience with SSR incidence). MAXIMIN and MAXIMAX criteria were used to incorporate farmers' site-specific past experience with SSR incidence, and optimum actions were derived using the criterion of profit maximization. Our results suggest that management practices should be applied to increase attainable yield despite their association with high disease risk.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1433-1433 ◽  
Author(s):  
A. Koehler ◽  
H. Shew

Stevia (Stevia rebaundiana Bertoni) is an emerging perennial crop in the United States. The crop is grown for 3 to 5 years with two harvests per growing season. Stevia contains numerous glycosides that are used as a natural noncaloric sweetener, and in 2008 was approved by the USDA as a sugar substitute. In commercial plantings of second-year stevia in North Carolina, diseased plants were observed in April and May of 2013. Diseased plants were observed in several counties in the state in fields that had been planted primarily in a corn-soybean rotation prior to stevia planting. Symptoms included wilting, chlorotic leaves, necrotic leaves at the base of the stem, bleached stem lesions, and dead plants. Symptomatic plants often also had tufts of white hyphae present on stems and large, irregularly shaped 2- to 8-mm black sclerotia frequently were present on the base of the stem. Isolations from infected stem tissue were made on potato dextrose agar amended with 50 μg/ml of streptomycin sulfate and penicillin G. Based on hyphal and sclerotial characteristics, isolates were tentatively identified as Sclerotinia sclerotiorum (Lib.) de Bary (4). Koch's postulates were confirmed on 10-week-old Stevia plants cv. G3 grown in the greenhouse in 10-cm-diameter pots containing a sterile 1:1:1 sand, loam, media mix. Oat grains infested with one isolate obtained from diseased field plants served as the inoculum. Oats were sterilized on three consecutive days, inoculated with colonized agar plugs of S. sclerotiorum, and then incubated at room temperature until they were thoroughly colonized. Three infested oat grains were buried 1 cm deep approximately 2 cm from the base of the plant in each of the six test pots and plants were observed over a 3-week period for symptoms. Symptoms developed on all plants within 5 days of inoculation. Leaves began to wilt, then turned chlorotic and necrotic, with stem lesions and sclerotia present at the base of the plant. Isolations were taken from infected stem tissue and pure cultures were prepared for molecular identification. Uninoculated control plants did not develop symptoms. Pathogen identification was confirmed using universal primers ITS 4,5 and β-tubulin (2,3). Mycelium from the cultured greenhouse stem isolations were grown in potato dextrose broth. Mycelium samples were aspirated and lyophilized prior to DNA extraction. Extracted DNA was amplified through PCR with ITS and β-tubulin primers and sent for sequencing. Sequences were aligned using CLC Workbench. Sequences from ITS45 had 100% identity to S. sclerotiorum GenBank Accession No. KF859933.1, confirming S. sclerotiorum as the causal organism. The β-tubulin sequence was compared against the Broad Institute S. sclerotiorum whole genome shotgun sequence and was confirmed to have 100% identity to the beta tubulin chain (5). This is the first report of S. sclerotiorum on stevia in the United States. Chang et al. (2) reported a stem rot of stevia in Canada and confirmed S. sclerotiorum as the causal organism. References: (1) K. Chang et al. Plant Dis. 81:311, 1997. (2) J. Freeman et al. Eur. J. Plant Pathol. 108:877, 2002. (3) N. L. Glass and G. C. Donaldson. Appl. Environ. Microbiol. 61:1323, 1995. (4) J. E. M. Mordue and P. Holliday. CMI No. 513, 1976. (5) Sclerotinia sclerotiorum Sequencing Project, Broad Institute of Harvard and MIT. Online: http://www.broadinstitute.org/ , accessed July 16, 2014.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 530-530 ◽  
Author(s):  
S. Gaetán ◽  
M. Madia

Canola (Brassica napus) was introduced as an alternative crop for wheat in Argentina. During 2003, typical symptoms of stem rot disease were observed on canola plants in two commercial fields located at Bragado, in northern Buenos Aires Province in Argentina. Average disease incidence across four canola cultivars was 21% (range = 13 to 29%). Symptoms included chlorosis and wilting of foliage and necrosis of basal stems. The disease appeared singly or in patches consisting of 4- to 5-month-old plants. The first visible symptom noticed was chlorosis and wilting of the foliage beginning from the basal leaves. Infection of the main stem at ground level typically was followed by a grayish white discoloration that progressed above the soil line to the apex. In advanced stages of the disease, stems and branches became bleached and eventually died. Black and irregularly shaped sclerotia (average size 5.5 × 2.8 mm) inside necrotic stem tissue were the typical signs of the pathogen. From September to October 2003, four samples consisting of six affected plants per sample were arbitrarily collected from two commercial fields located at Bragado. Sclerotia were taken from diseased stems, dipped in 70% ethanol, surface sterilized with 1% sodium hypochlorite for 1 min, and rinsed in sterile water. Each sclerotium was blotted dry on sterile Whatman's filter paper and placed on potato dextrose agar. Plates were incubated in the dark at 25°C for 2 to 3 days, followed by incubation under 12-h NUV light/12-h dark for 6 to 8 days. Six resulting colonies were identified as Sclerotinia sclerotiorum (Lib.) de Bary on the basis of taxonomic characteristics of the plant pathogenic species of Sclerotinia (3). Koch's postulates for three fungal isolates from infected plants were carried out on 6-week-old canola plants (cvs. Eclipse, Impulse, Master, and Mistral) by placing a colonized agar disk into wounds made in the basal stem region with a sterile scalpel. Pathogenicity tests, which included five inoculated and three control plants potted in a sterilized soil mix (soil/sand, 3:1), were conducted in a greenhouse at 23 to 26°C and 75% relative humidity with no supplemental light. Characteristic symptoms identical to the original observations developed within 12 days after inoculation on 100% of the inoculated plants for three isolates. Symptoms included wilted foliage, collapsed plants, and plant death. White mycelium and sclerotia developed on infected tissues, and the pathogen was successfully reisolated from symptomatic plants in all instances. Control plants, which were treated similarly except that the agar disk did not contain fungal growth, remained healthy. The experiment was repeated, and the results were identical to the first inoculations. Canola stem rot disease incited by S. sclerotiorum was first reported in Argentina during 1995 at experimental field plots in Buenos Aires. S. sclerotiorum, which has been reported to cause disease in canola in Canada (2) and the United States (1,4), currently represents a serious problem to the main canola cultivars grown in Argentina. To our knowledge, this is the first report of the occurrence of S. sclerotiorum causing a high incidence of stem rot in commercial crops of canola in Argentina. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) L. B. Jamaux et al. Plant Pathol. 44:22, 1995. (3) L. M. Kohn. Phytopathology 69:881, 1979. (4) D. V. Phillips et al. Phytopathology 92:785, 2002.


Plant Disease ◽  
2006 ◽  
Vol 90 (2) ◽  
pp. 215-219 ◽  
Author(s):  
C. A. Bradley ◽  
R. A. Henson ◽  
P. M. Porter ◽  
D. G. LeGare ◽  
L. E. del Río ◽  
...  

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, can be a devastating disease of canola (Brassica napus) in the northern United States. No canola cultivars are marketed as having resistance to SSR. Field trials were established in Red Lake Falls, MN (2001, 2003, and 2004) and Carrington, ND (2001, 2002, 2003, and 2004) to evaluate canola cultivars for resistance to SSR. These cultivars also were evaluated for resistance to SSR under controlled conditions using the following methods: petiole inoculation technique (PIT), detached leaf assay (DLA), and oxalic acid assay (OAA). Significant (P ≤ 0.05) differences were detected among cultivars for SSR and yield in the field trials, with SSR levels varying from low to high among years and locations. Cultivars with consistent high levels and low levels of SSR in the field trials were identified. Significant (P ≤ 0.05) differences were detected among cultivars for SSR using the PIT and OAA methods, but not the DLA method. No significant (P ≤ 0.05) correlations between SSR levels in the controlled studies with SSR levels in the field trials were detected; however, significant negative correlations were detected between SSR area under the disease process curve values from the PIT method and yield from Carrington, ND in 2001 and 2002. Although the PIT and OAA methods differentiated cultivars, neither method was able to predict the reaction of cultivars to SSR in the field, indicating that field screening for SSR resistance is still critical for the development of resistant cultivars.


Sign in / Sign up

Export Citation Format

Share Document