scholarly journals First Report of Neoerysiphe sechii Causing Powdery Mildew on Sechium edule in San Luis Potosi, Mexico

Plant Disease ◽  
2021 ◽  
Author(s):  
Jorge Cadena-Iñiguez ◽  
Gildardo Olguín-Hernández ◽  
Moises Camacho-Tapia ◽  
Kamila C. Correia ◽  
Alma Rosa Solano-Báez ◽  
...  

From 2018 to 2020, powdery mildew-like signs and symptoms were observed on chayote (Sechium edule var. virens levis) in a commercial field located in Santa María del Río, San Luis Potosí, Mexico. Signs appeared as whitish powdery masses on both sides of leaves and stems. Disease incidence was about 30% and signs covered up to 70% of leaf surface. Ten samples were collected and analyzed. Mycelium was amphigenous, persistent, white, in dense patches. Hyphal appressoria were lobed and solitary. Conidiophores (n = 30) were hyaline, erect, straight, and 62 to 101 μm long. Foot cells were cylindrical and straight, followed by 1–3 shorter cells, and forming conidia in short chains. Conidia (n = 100) were hyaline, surface striate, cylindrical-ellipsoid, doliiform or ovoid, 25.7 to 37.6 × 11.9 to 18.4 μm, without fibrosin bodies, and with germ tubes terminal or subterminal. Conidial appressoria were lobed. Chasmothecia were not observed. The morphological characters were consistent with those of the anamorphic state of Neoerysiphe sechii (Gregorio-Cipriano et al. 2020). A voucher specimen was deposited in the Herbarium of the Department of Agricultural Parasitology at the Chapingo Autonomous University under accession number UACH192. To confirm the identification of the fungus, genomic DNA was extracted from conidia and mycelium, and the internal transcribed spacer (ITS) region and part of the 28S gene were amplified by PCR and sequenced. The ITS region of rDNA was amplified using the primers ITS5/ITS4 (White et al. 1990). For amplification of the 28S rRNA partial gene, a nested PCR was performed using the primer sets PM3 (Takamatsu and Kano 2001)/TW14 (Mori et al. 2000) and NL1/TW14 (Mori et al. 2000) for the first and second reactions, respectively. Phylogenetic analyses using the maximum parsimony and maximum likelihood methods, including ITS and 28S sequences of isolates of Neoerysiphe spp. were performed and confirmed the results obtained in the morphological analysis. The isolate UACH192 grouped in a clade with isolates of N. sechii. The ITS + 28S sequence was deposited in GenBank under accession number MZ468642. Pathogenicity was confirmed by gently dusting conidia from infected leaves onto ten leaves of healthy chayote plants. Five non-inoculated leaves served as controls. The plants were maintained in a greenhouse at 25 to 30 ºC, and relative humidity of 60 to 70%. All inoculated leaves developed similar symptoms to the original observation after 8 days, whereas control leaves remained disease free. Microscopic examination of the fungus on inoculated leaves showed that it was morphologically identical to that originally observed. The pathogenicity test was repeated twice with similar results. Based on morphological data and phylogenetic analysis, as well as pathogenicity test, the fungus was identified as N. sechii. This pathogen has been previously reported causing powdery mildew on S. edule and S. mexicanum in Veracruz, Mexico (Gregorio-Cipriano et al. 2020). However, to our knowledge, this is the first report of N. sechii causing powdery mildew on chayote in San Luis Potosí (Central Mexico). This pathogen represents a serious threat to chayote production and disease management strategies should be developed.

Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 174-174 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Calendula officinalis L. (Asteraceae) (pot marigold or English marigold) is an ornamental species grown in gardens and as potted plants for the production of cut flower. It was also used in ancient Greek, Roman, Arabic, and Indian cultures as a medicinal herb as well as a dye for fabrics, foods, and cosmetics. During the summer of 2007, severe outbreaks of a previously unknown powdery mildew were observed on plants in several gardens near Biella (northern Italy). Both surfaces of leaves of infected plants were covered with dense, white mycelia and conidia. As the disease progressed, infected leaves turned yellow and died. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, born in short chains (four to six conidia per chain), and measured 27.0 to 32.1 (31.4) × 12.9 to 18.4 (18.2) μm. Conidiophores measured 49 to 77.3 (67.2) × 8 to 13.3 (10.8) μm and showed a foot cell measuring 44 to 59 (51.9) × 9.3 to 12.6 (11.3) μm followed by one shorter cell measuring 15.6 to 18.9 (17.6) × 10.4 to 13.6 (12.2) μm. Fibrosin bodies were present. Chasmothecia were spherical, amber colored, with a diameter of 89 to 100 (94.5) μm. Each chasmothecium contained one ascus with eight ascospores. On the basis of its morphology, the causal agent was determined to be a Podosphaera sp. (2). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 588 bp showed a 100% homology with the sequence of Podosphaera xanthii (2). The nucleotide sequence has been assigned GenBank Accession No. EU100973. Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy C. officinalis plants. Five plants were inoculated. Five noninoculated plants served as control. Plants were maintained in a greenhouse at temperatures ranging from 20 to 26°C. Eleven days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on C. officinalis in Italy. C. officinalis was previously described as a host to Sphaerotheca fuliginea (synonym S. fusca) in Great Britain (4) as well as in Romania (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (3) E. Eliade. Rev. Appl. Mycol. 39:710, 1960. (4) F. J. Moore. Rev. Appl. Mycol. 32:380, 1953.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1385-1385
Author(s):  
H. B. Lee ◽  
C. J. Kim ◽  
H. Y. Mun

Spanish needles (Bidens bipinnata L.) is an annual herb that belongs to a genus of flowering plants in family Asteraceae native to United States, and tropical regions around world. The plant produces important flavonoid compounds quercitin and hyperoside that function as anti-allergens, anti-inflammatories, anti-microbials, and anti-cancer agents. Between July and October 2011 and 2012, white superficial mycelia were observed initially on leaf and stem portions, but later progressed to the flower head. Surveys showed that the disease was widespread in Gwangju and most areas of South Korea. Abundant, necrotic, dark brown spots showing chasmothecia were frequently observed in October and were abundant on the adaxial surface of leaves. Chasmothecia were blackish brown to yellow without typical appendages. They ranged from 51.2 to 71.1 (mean 66.8) μm in diameter. Conidia were formed singly and the primary conidia were ellipsoid, rounded at the apex, truncated base, and ranged from 25.4 to 33.2 (mean 27.3) μm long × 10.2 to 12.2 (mean 11.3) μm wide. Conidiophores were erect, 60.1 to 101.3 (mean 98.3) μm long × 6.2 to 9.2 (mean 7.3) μm wide. From extracted genomic DNA, the internal transcribed spacer (ITS) region inclusive of 5.8S and 28S rDNA was amplified with ITS1F (5′-TCCGTAGGTGAACCTGCGG-3′) and LR5F (5′-GCTATCCTGAGGGAAAC-3′), and LROR (5′-ACCCGCTGAACTTAAGC-3′) and LR5F primer sets, respectively. rDNA ITS (GenBank Accession No. JX512555) and 28S (JX512556) homologies of the fungus (EML-BBPW1) represented 99.6% (532/534) and 100% (661/661) identity values with Podosphaera xanthii (syn. P. fusca) AB040349 and P. xanthii (syn. P. fusca) AB462798, respectively. The rDNA sequence analysis revealed that the causal fungus matched P. xanthii (syn. P. fusca), forming a xanthii/fusca group (3,4). A pathogenicity test was performed on three plants in a greenhouse. The treated leaves were sealed in vinyl pack in humid condition for 2 days. Seven days after inoculation, similar symptoms were observed on the inoculated Spanish needles plant leaves. No symptoms were observed on control plants treated with distilled water. Koch's postulates were fulfilled by re-observing the fungal pathogen on the inoculated leaves. Podosphaera (syn. Sphaerotheca) xanthii (or fusca) has been known as an ubiquitous species with a broad host range. So far, five records regarding P. xanthii (=P. fusca) have been found in plants of genus Bidens. P. xanthii has been reported to occur on B. cernua in Belarus and Switzerland. In addition, the powdery mildew species was reported to occur on B. frondosa and B. tripartita in Korea, Russia, and Switzerland (2). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on Spanish needles (B. bipinnata) in Korea. References: (1) U. Braun et al. Schlechtendalia 10:91, 2003. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 2012. (3) H. B. Lee. J. Microbiol. 51:1075, 2012. (4) S. Takamatsu, et al. Persoonia 24:38, 2010.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 484-484 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Bellis perennis (English daisy) is a flowering plant belonging to the Asteraceae and is increasingly grown as a potted plant in Liguria (northern Italy). In February 2007, severe outbreaks of a previously unknown powdery mildew were observed on plants in commercial farms at Albenga (northern Italy). Both surfaces of leaves of affected plants were covered with white mycelia and conidia. As the disease progressed, infected leaves turned yellow. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, borne in chains (as many as three conidia per chain), and measured 27.7 × 16.9 (15.0 to 45.0 × 10.0 to 30.0) μm. Conidiophores measured 114.0 × 12.0 (109.0 to 117.0 × 11.0 to 13.0) μm and showed a foot cell measuring 78.0 × 11.0 (72.0 to 80.0 × 11.0 to 12.0) μm followed by two shorter cells. Fibrosin bodies were absent. Chasmothecia were not observed in the collected samples. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 415 bp obtained showed an E-value of 7e–155 with Golovinomyces cichoracearum (3). The nucleotide sequence has been assigned the GenBank Accession No. AB077627.1 Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy B. perennis plants. Twenty plants were inoculated. Fifteen noninoculated plants served as a control. Plants were maintained in a greenhouse at temperatures ranging from 10 to 30°C. Seven days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. The fungus observed on inoculated plants was morphologically identical to that originally observed. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on B. perennis in Italy. The disease was already reported in other European countries (2). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun The Powdery Mildews (Erysiphales) of Europe. Gustav Fischer Verlag, Jena, Germany, 1995. (3) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zong-ming Sheu ◽  
Ming-hsueh Chiu ◽  
Lawrence Kenyon

Mungbean (Vigna radiata L.) is routinely grown in the experimental fields at the headquarters of the World Vegetable Center (23°6'30.88"N, 120°17'51.31"E) for breeding, research and germplasm multiplication. In a spring 2016 mungbean trial, about 50% of the plants were affected with powdery mildew. The white, powdery-like patches first appeared on the upper leaf surfaces, and soon developed to grey patches on both sides of the leaves. Purple to brown discoloration appeared on the underside of the infected leaf. Microscopy examination revealed that the causal organism was not Erysiphe polygoni, which had previously been documented as the powdery mildew pathogen on mungbean in Taiwan (Hartman et al. 1993). The fungus produced typical structures of the powdery mildew Euoidium, anamorph of the genus Podosphaera. The mycelium consisted of septate, flexuous hyphae with indistinct appressoria. The erect conidiophores arising from superficial hyphae varied from straight or slightly curved to curled. Three to ten conidia were borne in long chains with crenate edges. Foot-cells were straight, cylindrical and measured 30 to 52 µm long. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, with fibrosin bodies, and measured 27 to 33 (mean = 30.4) × 15 to 20 (mean = 16.6) µm. Germ tubes were clavate and occasionally forked, and were produced from the lateral sites of the conidia. No chasmothecia were found in the samples. The morphological characteristics were consistent with P. xanthii (Castagne) U. Braun & Shishkoff (Braun & Cook 2012). To confirm the identity, the internal transcribed spacer (ITS) region of rDNA and partialβ-tubulin gene (TUB2) for the isolate MG3 were amplified with the primers ITS4/ITS5 (White et al. 1990) and BtuF5/BtuR7a (Ellingham et al. 2019), respectively. BLASTn analysis revealed the ITS sequence (MN833717) was 100% identical to many records of P. xanthii whereas the TUB2 sequence (MW363957) was 100% identical to a record of P. fusca (syn. P. xanthii; KC333362) in NCBI GenBank. A pathogenicity test was conducted by dusting conidia from an infected leaf onto six healthy four-week-old mungbean plants (cv ‘Tainan No. 3’). Another three plants were not inoculated and were used as control. All the plants were maintained in a greenhouse at 25 to 28°C. All inoculated plants developed powdery mildew symptoms after 10 days, whereas the control plants remained symptomless. To our knowledge, this is the first report of P. xanthii causing disease on mungbean in Taiwan. P. xanthii also has been reported on mungbean in Thailand (Meeboon et al. 2016), while other records referring to E. polygoni infecting Vigna spp. are from Brazil and Fiji (Farr & Rossman 2020). Although both P. xanthii and E. polygoni have now been reported as causing powdery mildew on mungbean in Taiwan, which species predominates or is more important remains unclear. A comprehensive survey with accurate species identification is required to develop effective management of the disease, particularly for resistance breeding.


Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 632-632
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Petunia × hybrida (Solanaceae) includes several hybrids that are grown as ornamental plants and are very much appreciated for their long-lasting flowering period. Among those, the variety pendula is often selected because of its hanging growth habit that is favorable for balcony decoration. During the summer of 2005, severe outbreaks of a previously unknown powdery mildew were observed on all petunia plants in several gardens near Biella and Torino (northern Italy). Both surfaces of the leaves of affected plants were covered with white, dense mycelia and conidia. As the disease progressed, infected leaves turned yellow and died. Mycelia also were observed on stems and flowers. Conidia were hyaline, ellipsoid, borne in short chains (with a maximum of four conidia per chain), and measured 27 to 36 × 17 to 21 μm (average 31 × 19 μm). Conidiophores, 130 to 154 μm (average 140 μm) long, showed the foot cell (measuring 42 to 65 × 10 to 12 μm, average 52 × 11 μm) followed by three shorter cells measuring 27 to 30 × 13 to 17 μm (average 29 to 14 μm). Fibrosin bodies were absent. Chasmothecia were not observed in the collected samples. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 588 bp obtained showed an E-value of 0.0 with Golovinomyces orontii (Erysiphe orontii) (2). The nucleotide sequence has been assigned GenBank Accession No. DQ 987491. Inoculations were made by gently pressing diseased leaves onto leaves of five healthy Petunia × hybrida var. pendula plants, belonging to cv. Surfinia. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a greenhouse at temperatures between 14 and 30°C. After 10 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of powdery mildew on P. × hybrida caused by G. orontii in Italy. A powdery mildew of P. × hybrida reported in 1966 in Romania has been attributed to E. cichoracearum (4), while Braun (2) reported P. × hybrida as a possible host of E. orontii. Specimens of this disease are available at AGROINNOVA Collection, University of Torino, Italy. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun. A Monograph of the Erysiphaceae (Powdery Mildews). Cramer, Berlin, GDR, 1987. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) E. Eliade. Reprium nov. Spec. Regni veg.73:43, 1966.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 445-445 ◽  
Author(s):  
R. Velásquez-Valle

A disease survey carried out in 1998, 1999, and 2000 in the states of Aguascalientes, San Luis Potosí, and Zacatecas revealed the dispersal of Meloidogyne spp in this region of Mexico. Pepper (Capsicum annuum L.) Mirasol type plants showing general chlorosis, root rot, and galls were observed in central Zacatecas and western San Luis Potosí. Dry bean (Phaseolus vulgaris L.) plants (Landrace Flor de Mayo) collected in western San Luis Potosí and Aguascalientes also showed root galls. Roots of squash (Cucurbita spp) and sunflower (Helianthus annuus L.) plants that showed galled roots were found under dryland conditions in northern Zacatecas. Nursery peach (Prunus persica L.) plantlets with no foliar symptoms but showing severe root galling were detected in Zacatecas. Perineal patterns of Meloidogyne females obtained from those galled roots were coincident with those of M. incognita according to pictoral keys (1). This is the first report of M. incognita affecting these hosts in that region of the country. Alfalfa (Medicago sativa) plants collected in Aguascalientes showed galls caused by Meloidogyne spp; this is the first report of this nematode affecting alfalfa in the state. Volunteer onion (Allium cepa L., ‘Grano Blanco’) plants growing in a squash field in eastern Zacatecas had galled roots; a few Meloidogyne spp. females were obtained from small galls. This is the first report of the root-knot nematode affecting onion plants in north central México. Onion is known to be a host for several species of this nematode (2). Stunted, chlorotic squash plants had roots severely galled by Meloidogyne spp, but pepper crops growing in the same field in previous years showed general chlorosis, reduced size, and poor yield did not have root galls. References: (1) Eisenback, J. D., et al. 1983. Guia para la identificación de las cuatro especiales más comunes del nematodo agallador (Meloidogyne spp.) con una clave pictorica. International Meloidogyne Project, Raleigh, NC. (2) Schwartz, H. F., and Mohan, S. K. 1995. Compendium of onion and garlic diseases. American Phytopathological Society. St. Paul. MN.


Plant Disease ◽  
2008 ◽  
Vol 92 (2) ◽  
pp. 313-313 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
J. Rossi ◽  
M. L. Gullino

Hedera helix L. (Araliaceae) is a common ornamental species that is able to grow in shaded areas and is often used in parks and gardens. During the fall of 2006, severe outbreaks of a previously unknown powdery mildew were observed in several gardens in Liguria (northern Italy). Both surfaces of young leaves of affected plants were covered with dense, white mycelia and conidia. As the disease progressed, infected leaves turned yellow and dropped. Mycelia and conidia were also observed on young stems. Conidia were hyaline, cylindrical, borne singly, and measured 38 to 51 × 12 to 18 (average 42 × 16) μm. Single germ tubes, moderately long (average 26 μm), developed at the end of conidia. Appressoria of germ tubes and hyphae were lobed (three to four lobes). Conidiophores, 68 to 82 × 7 to 8 (average75 × 8) μm, showed foot cells measuring 39 to 60 × 7 to 8 (average 52 × 8) μm, followed by one shorter cell measuring 19 to 28 × 8 to 9 (average 23 × 9) μm. Fibrosin bodies were absent. Chasmothecia were numerous, spherical, amber-colored then brown at maturity, with diameters ranging from 97 to 140 (average 120) μm, containing four asci shortly stalked, 57 to 72 × 32 to 51 (average 65 × 41 μm). Ascospores were ellipsoid and measured 24 to 34 × 15 to 20 (average 30 × 17) μm. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 613-bp fragment showed an E-value of 0.0 with Erysiphe heraclei. The nucleotide sequence has been assigned GenBank Accession No. EU 010381. In GenBank, our nucleotide sequence shows an E-value of 0.0 also with E. betae. However, the comparison of appressorium shape and germ tube length observed on our microorganism with those described for E. betae by Braun (2) suggests that the causal agent of the powdery mildew reported on ivy is E. heraclei. Furthermore, symptoms described on our host, appressorium shape and the length of conidiophores, are different from those of Oidium araliacearum described by Braun (2) on Araliaceae. Inoculations were made by gently pressing diseased leaves onto leaves of five healthy H. helix plants. Three noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a greenhouse at temperatures between 21 and 25°C. After 15 days, typical powdery mildew colonies developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of powdery mildew on H. helix caused by E. heraclei in Italy. A powdery mildew caused by E. cichoracearum was previously reported on H. canariensis var. azorica in Italy (3), while a powdery mildew on H. helix caused by O. araliacearum and Golovinomyces orontii, respectively, were observed in the United States (4) and Germany. Herbarium specimens of this disease are available at AGROINNOVA Collection, University of Torino, Italy. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun. A Monograph of the Erysiphaceae (Powdery Mildews). Cramer, Berlin, Germany, 1987. (3) C. Nali. Plant Dis. 83:198, 1999. (4) G. S. Saenz and S. T. Koike. Plant Dis. 82:127, 1998.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 162-162 ◽  
Author(s):  
I. Y. Choi ◽  
S. S. Cheong ◽  
J. H. Joa ◽  
S. E. Cho ◽  
H. D. Shin

Sechium edule (Jacq.) Sw. (Cucurbitaceae, chayote, mirliton) is native to Mexico and Central America. Several trials have recently been conducted to determine the ability of chayote cultivars to grow under the climatic and soil conditions of South Korea. In April 2013, chayote plants were observed showing typical symptoms of powdery mildew in a glasshouse in Jeju City, Korea. Powdery mildew colonies were circular to irregular, forming white patches on both sides of the leaves. As the disease progressed, entire leaves were covered with white mycelium, followed by leaf withering and premature senescence. The same symptoms were also found on chayote plants in a polyethylene-film-covered greenhouse in Iksan City, Korea, in 2014. Voucher specimens were deposited in the Korea University Herbarium (KUS-F27289, F27422, F28186). Hyphae were flexuous to straight, branched, septate, and 5 to 7 μm wide. Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were straight, 150 to 240 × 10 to 12 μm and produced three to seven immature conidia in chains with a crenate outline. Foot-cells of conidiophores were straight, cylindric, and 52 to 85 μm long. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, measured 27 to 36 × 16 to 23 μm with a length/width ratio of 1.3 to 2.0, and had distinct fibrosin bodies. Simple to forked germ tubes were produced from the lateral position of conidia. No chasmothecia were found. These structures are typical of the powdery mildew Euoidium anamorph of the genus Podosphaera. Dimensions of foot-cells and conidia were within the ranges provided for P. xanthii (Castagne) U. Braun & Shishkoff, and the length/width ratio of conidia, appressorial characteristics, and conidial germination patterns also conformed to the standard description (2). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA of isolate KUS-F27289 was amplified with primers ITS1 and ITS4 and sequenced directly. The resulting 473-bp sequence was deposited in GenBank (Accession No. KM657960). A GenBank BLAST search of the Korean isolate showed 99% similarity with P. xanthii isolates from cucurbitaceous hosts (e.g., AB774155 to AB774158, AB040321, JQ340082, etc.). Pathogenicity was confirmed through inoculation tests by gently pressing a diseased leaf onto young leaves of three asymptomatic, potted chayote plants. Three non-inoculated plants were used as controls. Plants were maintained in a greenhouse at 24 to 34°C. Inoculated leaves started to develop symptoms after 5 days, whereas the control plants remained symptomless. The pathogenicity test was carried out twice with similar results. Powdery mildews of chayote caused by Podosphaera species have been reported in Australia, South Africa, Portugal, India, China, and the United States (1,3,4). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on chayote in Korea. Since chayote production was only recently started on a commercial scale in Korea, powdery mildew infections may pose a serious threat to the safe production of this vegetable. References: (1) P. Baiswar et al. Australas. Plant Dis. Notes 3:160, 2008. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab. Online publication, ARS, USDA, Retrieved October 4, 2014. (4) R. Singh et al. Plant Dis. 93:1348, 2009.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 831-831
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
D. Minerdi ◽  
M. L. Gullino

Veronica spicata (spike speedwell) is a perennial garden species belonging to the family Scrophulariaceae. During the summer through fall of 2004 and 2005, severe outbreaks of a previously unknown powdery mildew were observed in several gardens near Biella (northern Italy). Upper surfaces of leaves were covered with a white mycelium and conidia, and as the disease progressed, infected leaves turned yellow and died. Very rarely was the mycelium observed on the lower surface of leaves or on petioles and flowers. Foot cell was cylindric and measured 19.2 to 25.7 × 10.8 to 14.3 μm (average 21.9 × 12.0 μm). Conidia were hyaline, ellipsoid, brought in short chains (three conidia per chain), and measured 22.2 to 40.8 × 13.6 to 21.6 μm (average 30.1 × 17.0 μm). Conidiophores measured 45.5 to 74.0 × 10.4 to 11.0 μm (average 59.4 × 10.6 μm). Fibrosin bodies were absent. Cleistothecia were never observed on the samples collected. The ITS region (internal transcribed spacer) of rDNA was amplified using the primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 504 bp obtained showed an E-value of 0.0 with Erysiphe (Golovinomyces) orontii (2). The nucleotide sequence has been assigned GenBank Accession No. DQ386696. Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of five healthy Veronica spicata plants. Five noninoculated plants served as controls. Inoculated and noninoculated plants were maintained in a greenhouse where temperatures ranged between 15 and 28°C. After 15 days, typical powdery mildew symptoms developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of powdery mildew on V. spicata in Italy. Sphaerotheca fuliginea has been reported as the causal agent of powdery mildew on V. spicata (4). Specimens of this disease are available at DIVAPRA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun. Nova Hedwigia 89:166, 1987. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) B. Ing. Mycologist 4:125, 1990.


Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1348-1348
Author(s):  
H. B. Lee ◽  
C. J. Kim ◽  
H. Y. Mun ◽  
J. P. Hong ◽  
D. A. Glawe

Trident maple (Acer buergerianum Miq.) is widely grown in Korea as an ornamental tree as well as for the art of bonsai. During 2008 and 2009, a powdery mildew was observed on trident maple plants at the campus of Chonnam National University, Gwangju, Korea. Further surveys revealed the disease to be widespread on this species in other areas including Jeonbuk and Chungnam provinces in Korea. White, superficial mycelia were observed on young shoots and leaves early in spring. Both macroconidia and microconidia were produced beginning in May and conidial production continued through the summer into September and October. Production of chasmothecia was observed starting in September and continued into October. Macroconidia were produced in chains that were sinuate in outline. Individual macroconidia were barrel shaped and 23.4 to 30.0 (26.6) × 15.6 to 21.1 (18.1) μm. Foot cells of macroconidial conidiophores were 26.7 to 110.7 (48) × 7.1 to 11.2 (8.8) μm with one to five following cells. Microconidia were broadly ellipsoidal to subglobose and 8.9 to 12.5 (10.5) × 4.3 to 5.8 (5.1) μm. Chasmothecia typically were formed on adaxial leaf surfaces and 193.2 to 238.1 (216.8) μm in diameter. Appendages bore uncinate to circinate apices and were 176.8 to 267.7 (211.5) × 4.3 to 8.0 (6.2) μm. From extracted genomic DNA, internal transcribed spacer (ITS) region inclusive of 5.8S rDNA was amplified with ITS1F (5′-CTTGGTCATTTAGAGGAAGT-3′) and LR5F (5′-GCTATCCTGAGGGAAAC-3′) primers. The causal fungus was determined to be Sawadaea nankinensis (F.L. Tai) S. Takam. & U. Braun (2) on the basis of morphological data and ITS rDNA sequences. A BLAST search of GenBank with an ITS sequence from this fungus determined that the five sequences exhibiting the highest max score values (1,811 to 2,004) were from S. nankinensis; these sequences produced max ident values from 94% to 99%. In contrast, max score and max ident values from sequences of other Sawadaea spp. were lower, including scores of 1,063 and 98% similarity for S. polyfida var. japonica, 915 and 97% for S. tulasnei, and 913 and 97% for S. bicornis. Pathogenicity tests were conducted on field-grown plants in two replicates. These plants were inoculated with a paintbrush to apply conidia (~5 × 106/ml) collected from powdery-mildew-infected leaves. Inoculated plants developed powdery mildew symptoms within 5 days of inoculation and resembled those observed on naturally infected plants. S. nankinensis (synonym Uncinula nankinensis) was first reported on A. buergerianum from China in 1930 (2). Recently, S. nankinensis (F.L. Tai) S. Takam & U. Braun was reported to occur on A. buergerianum in Japan (3). Until now, three Sawadaea spp. (S. bicornis (Wallr.) Homma, S. negundinis Homma, and S. tulasnei (Fuckel) Homma) have been reported to cause powdery mildew on A. ginnala, but only S. bicornis (= U. circinata Cooke & Peck) has been reported to cause powdery mildew on A. ginnala in Korea (1). However, no Sawadaea sp. previously was reported to cause powdery mildew on A. buergerianum. To our knowledge, this is the first report of powdery mildew on trident maple (A. buergerianum) caused by S. nankinensis in Korea. References: (1) H. D. Shin. Erysiphaceae of Korea. National Institute of Agricultural Science and Technology, 2000. (2) F. L. Tai. Page 1517 in: Sylloge Fungorum Sinicorum. Science Press, Academia Sinica, Peking, 1979. (3) S. Takamatsu et al. Mycoscience 49:161, 2008.


Sign in / Sign up

Export Citation Format

Share Document