scholarly journals Trichoderma Isolates Inhibit Fusarium virguliforme Growth, Reduce Root Rot, and Induce Defense-Related Genes on Soybean Seedlings

Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1949-1959 ◽  
Author(s):  
Mirian F. Pimentel ◽  
Erika Arnão ◽  
Amanda J. Warner ◽  
Arjun Subedi ◽  
Leonardo F. Rocha ◽  
...  

Sudden death syndrome (SDS) caused by Fusarium virguliforme is among the most important diseases affecting soybean in the United States. The use of biological control agents (BCAs) such as Trichoderma spp. can be a valuable resource to suppress F. virguliforme populations. Therefore, this research focused on screening possible BCAs against F. virguliforme and evaluating mycoparasitism and the induction of systemic resistance as mechanisms underlying the antagonistic activity of selected BCAs against F. virguliforme. In total, 47 potential BCAs, including 41 Trichoderma isolates and 6 Mortierella isolates, were screened in a dual-plate assay. The most effective isolates belonged to the Trichoderma harzianum species and were able to inhibit F. virguliforme radial growth by up to 92%. Selected Trichoderma isolates were tested in the greenhouse and in a microplot study. They reduced root rot caused by F. virguliforme when the plants were coinoculated with the pathogen and the BCA. The tested BCA’s ability to reduce F. virguliforme growth may be related to several mechanisms of action, including mycoparasitism and induction of defense-related genes in plants, as revealed by monitoring the expression of defense-related genes in soybean. Our results highlight the potential of native Trichoderma isolates to inhibit F. virguliforme growth and reduce SDS severity, providing the basis for future implementation of biological control in soybean production. More efforts are needed to implement the use of these approaches in production fields, and to deepen the current knowledge on the biology of these highly antagonistic isolates.

2020 ◽  
Vol 46 (3) ◽  
pp. 205-211
Author(s):  
Ciro Hideki Sumida ◽  
Lucas Henrique Fantin ◽  
Karla Braga ◽  
Marcelo Giovanetti Canteri ◽  
Martin Homechin

ABSTRACT Despite the favorable edaphoclimatic conditions for avocado production in Brazil, diseases such as root rot caused by the pathogen Phytophthora cinnamomi compromise the crop. With the aim of managing root rot in avocado, the present study aimed to evaluate chemical and biological control with isolates of Trichoderma spp. and Pseudomonas fluorescens. Thus, three assays were conducted to assess: (i) mycelial inhibition of P. cinnamomi by isolates of Trichoderma spp. and P. fluorescens from different crop systems; (ii) effect of autoclaved and non-autoclaved metabolites of P. fluorescens, and (iii) chemical or biological treatment of avocado seedlings on the control of root rot under field conditions. The isolates of Trichoderma spp. from maize cultivation soil and the commercial products formulated with Trichoderma presented greater antagonism (p <0.05) to the pathogen P. cinnamomi in the in vitro tests. Similarly, non-autoclaved metabolites of P. fluorescens presented antagonistic potential to control P. cinnamomi. Under field conditions, the fungicide metalaxyl and the bioagents showed effectiveness in controlling P. cinnamomi, as well as greater root length and mass. Results demonstrated potential for the biological control of avocado root rot with Trichoderma spp. and P. fluorescens.


2005 ◽  
Vol 4 (1) ◽  
pp. 85-90 ◽  
Author(s):  
M. Salehpour . ◽  
H.R. Etebarian . ◽  
A. Roustaei . ◽  
G. Khodakaramian . ◽  
H. Aminian .

2011 ◽  
Vol 52 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Krishna Kumar ◽  
N. Amaresan ◽  
S. Bhagat ◽  
K. Madhuri ◽  
R. C. Srivastava

2021 ◽  
Vol 7 (4) ◽  
pp. 315
Author(s):  
Ofir Degani ◽  
Shlomit Dor

Late wilt, a disease severely affecting maize fields throughout Israel, is characterized by the relatively rapid wilting of maize plants from the tasseling stage to maturity. The disease is caused by the fungus Magnaporthiopsis maydis, a soil and seed-borne pathogen. The pathogen is controlled traditionally through the use of maize cultivars having reduced sensitivity to the disease. Nevertheless, such cultivars may lose their immunity after several years of intensive growth due to the presence of high virulent isolates of M. maydis. Alternative effective and economical chemical treatment to the disease was recently established but is dependent on the use of a dripline assigned for two adjacent rows and exposes the risk of fungicide resistance. In the current work, eight marine and soil isolates of Trichoderma spp., known for high mycoparasitic potential, were tested as biocontrol agents against M. maydis. An in vitro confront plate assay revealed strong antagonistic activity against the pathogen of two T. longibrachiatum isolates and of T. asperelloides. These species produce soluble metabolites that can inhibit or kill the maize pathogen in submerged and solid media culture growth assays. In greenhouse experiments accompanied by real-time PCR tracking of the pathogen, the Trichoderma species or their metabolites managed to improve the seedlings’ wet biomass and reduced the pathogen DNA in the maize roots. A follow-up experiment carried out through a whole growth session, under field conditions, provided important support to the Trichoderma species’ beneficial impact. The direct addition of T. longibrachiatum and even more T. asperelloides to the seeds, with the sowing, resulted in a yield improvement, a significant increase in the growth parameters and crops, to the degree of noninfected plants. These bioprotective treatments also restricted the pathogen DNA in the host tissues (up to 98%) and prevented the disease symptoms. The results encourage more in-depth research to uncover such biological agents’ potential and the methods to implement them in commercial fields. If adequately developed into final products and combined with other control methods, the biological control could play an important role in maize crop protection against Late wilt.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 945
Author(s):  
Francisco J. Ruiz-Gómez ◽  
Cristina Miguel-Rojas

Phytophthora root rot caused by the pathogen Phytophthora cinnamomi is one of the main causes of oak mortality in Mediterranean open woodlands, the so-called dehesas. Disease control is challenging; therefore, new alternative measures are needed. This study focused on searching for natural biocontrol agents with the aim of developing integrated pest management (IPM) strategies in dehesas as a part of adaptive forest management (AFM) strategies. Native Trichoderma spp. were selectively isolated from healthy trees growing in damaged areas by P. cinnamomi root rot, using Rose Bengal selective medium. All Trichoderma (n = 95) isolates were evaluated against P. cinnamomi by mycelial growth inhibition (MGI). Forty-three isolates presented an MGI higher than 60%. Twenty-one isolates belonging to the highest categories of MGI were molecularly identified as T. gamsii, T. viridarium, T. hamatum, T. olivascens, T. virens, T. paraviridescens, T. linzhiense, T. hirsutum, T. samuelsii, and T. harzianum. Amongst the identified strains, 10 outstanding Trichoderma isolates were tested for mycoparasitism, showing values on a scale ranging from 3 to 4. As far as we know, this is the first report referring to the antagonistic activity of native Trichoderma spp. over P. cinnamomi strains cohabiting in the same infected dehesas. The analysis of the tree health status and MGI suggest that the presence of Trichoderma spp. might diminish or even avoid the development of P. cinnamomi, protecting trees from the worst effects of P. cinnamomi root rot.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1164-1164 ◽  
Author(s):  
M. I. Chilvers ◽  
D. E. Brown-Rytlewski

Leaf lesions and root rot symptoms typical of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme O'Donnell & T. Aoki were observed in commercial soybeans (Glycine max (L.) Merr.) in southern Michigan. Leaf symptoms ranged from chlorotic spots to severe interveinal chlorosis and necrosis, no foliar pathogens were noted. In 2008, isolates were collected from Berrien and St. Joseph counties. In 2009, isolates were collected from Cass, St. Joseph, Van Buren, Allegan, and Monroe counties. Pieces of roots with root rot symptoms were washed prior to surface disinfestation with 70% ethanol for 30 s and 0.5% NaOCl for 1 min and incubated on water agar (WA) in petri plates amended with 50 μg/ml of chloramphenicol for the production of sporodochia. Alternatively, spores were collected directly from nondisinfested roots expressing blue sporodochia. Single-spore cultures were derived by streaking macroconidia with a bacterial loop onto 3% WA + chloramphenicol and incubated overnight. With a dissecting microscope, single germinated macroconidia were collected with a sterile 0.2-mm-diameter insect pin and transferred to potato dextrose agar (PDA). Cultures on PDA grew slowly and developed blue-to-purple masses of sporodochia typical of F. virguliforme descriptions and similar to a representative isolate, Mont-1, grown alongside (1,2). Size of macroconidia from the six representative isolates, one from each county (including isolates derived from surface-disinfested and nondisinfested roots), and Mont-1 were determined to be within the range for F. virguliforme (42 to 56 × 5 to 6 μm), with an average of four septa per macroconidia. Identity of the representative isolates was confirmed by partial DNA sequencing of both strands of the internal transcribed spacer (ITS) region of the ribosomal RNA gene, translation elongation factor 1-α, and β-tubulin loci. All six representative isolates were identical in each of the three loci and matched with 100% similarity F. virguliforme accessions in GenBank and Fusarium-ID database searches, except for the β-tubulin locus in which a single nucleotide insertion was noted (Accession Nos. HM453328–HM453330). Sequences were 98 to 99% similar to other SDS Fusarium spp. not yet recorded in the United States. Koch's postulates were performed in the greenhouse according to Malvick and Bussey (3). Infested sorghum seed (~20 g) was placed 2 cm below soybean seed of susceptible cv. Williams 82 in plastic pots. Noninfested sorghum seed was used as a negative control and sorghum infested with Mont-1 as a positive control. Chlorotic spots developed 2 weeks after establishing the trial, and 3 to 4 weeks postinoculation, severe SDS symptoms of foliar interveinal chlorosis and necrosis and severe root rot developed. Koch's postulates were completed by reisolating F. virguliforme from a subset of infected plants. In addition, an isolate of F. virguliforme collected in 2008 was used to inoculate a 2009 field trial in East Lansing, MI with no history of SDS. Typical SDS symptoms developed in the field trial and F. virguliforme was isolated from a symptomatic plant that was identified as described above. Despite being reported across the majority of soybean-producing states, to our knowledge, this is the first confirmation and distribution report for SDS in Michigan. References: (1) T. Aoki et al. Mycoscience 46:162, 2005. (2) G. L. Hartman et al. Plant Dis. 81:515, 1997. (3) D. K. Malvick and K. E. Bussey. Can. J. Plant Pathol. 30:467, 2008.


2020 ◽  
Vol 7 (3) ◽  
pp. 14-25
Author(s):  
H. M. Tkalenko ◽  
O. I. Borzykh ◽  
S. V. Horal ◽  
K. M. Barvas-Hremiakova ◽  
L. A. Janse

Aims. To obtain and characterize new isolates of Trichoderma antagonistic to phytopathogenic fungi, including Fusarium spp., and 2) to determine their suitability for mass production under different cultivation conditions. Methods. Microbiological, cultural-morphological, statistical. Results. From plants affected by phytopathogenic fungi: cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), white cabbage (Brassica oleracea L.), winter wheat (Triticum aestivum L.), spring barley (Hordeum vulgare L.) in the Forest-Steppe of Ukraine (Kyiv re- gion) 11 new Trichoderma isolates were obtained. Preliminary, morphological determination allocated fi ve of them to T. viride (isolates CK, 165, 27, 49, 35), two of them to T. koningii (21, 64) and four of them to T. longibrachiatum (161, 162, 163, 164). All isolates showed moderate to high antagonistic activity towards 8 phytopathogenic fungal species (Fusarium oxysporum, Fusarium solani, Alternaria cucumerina, Colletotrichum phomoides, Botrytis cinerea, Trichothecium roseum, Penicillium sp., Cladosporium fulvum). In a dual culture experiment they showed generally similar or often higher activity to the above-mentioned fungi than the 8 control strains used in our study, belonging to T. viride (5 strains), T. koningii (2 strains) and T. harzianum (1 strain), which have been maintained since long time in our laboratory. The most active new isolate CK, (presumably) T. viride, showed comparable high activity towards all phytopathogenic fungi as compared to our most active control strain of T. viride, no. 23. The latter is the basis of a biocide Trichodermin, produced by biolaboratories of Ukraine, including the Institute of Plant Protection, NAAS, Kyiv. Chlamydospore production of all isolates and strains studied in submerged culture varied from 10 6 to 3 · 10 7 spores/ml, were T. viride isolates and strains were on the higher end. Isolates of ‘T. longibrachiatum’ did not produce chlamydospores in submerged culture. Upon superfi cial cultivation on barley grain, the strains and isolates of T. viride were also characterized by the highest production of spores (6 · 10 9 -9 · 10 9 spores/g) as compared to those of T. kon- ingii, T. harzianum (5.5 · 10 9 -6.8 · 10 9 spores/g) and T. longibrachiatum (1.3 · 10 8 -6.8 · 10 8 spores/g). In an in-vivo experiment under laboratory conditions the most promising antagonistic isolate CK was used to inoculate wheat seed and tested for protection against Fusarium root rot (inoculum a mixture of F. avenaceum, F. culmorum, F. gibbosum, F. oxysporum, in 4·10 4 spores/g), where it gave an 83 % reduction in root rot as compared to the non-inoculated con- trol. Conclusions. Five new isolates preliminarily (on the basis of morphological characteristics only) allocated to T. viride and four to T. longibrachiatum demonstrated in vitro the highest and widest antagonistic activity against the phytopathogenic fungal species Fusarium oxysporum, Fusarium solani, Alternaria cucumerina, Colletotrichum pho- moides, Botrytis cinerea, Trichothecium roseum, Penicillium sp., Cladosporium fulvum, as compared to new isolates, preliminarily allocated to - T. harzianum and T. koningii. New isolate CK (allocated to T. viride) showed a promising and similar high antagonistic activity as compared to our T. viride 23 strain, which is already successfully used in the biocide Trichodermin. Since this isolate CK also produced a high number of chlamydospores in submerged culture (3 · 10 7 spores/ml) and conidia (8 · 10 9 spores/g) when surface cultured on barley grain respectively, it is a potential new candidate for a biocide. When this CK isolate was studied in a small laboratory pot experiment, to control Fu- sarium root rot in wheat by preventive seed inoculation, it caused an 83 % reduction in this Fusarium root rot. Its usefulness under fi eld conditions and its effect on growth of plants will be investigated in future research


2013 ◽  
Vol 138 (4) ◽  
pp. 751-762 ◽  
Author(s):  
D. Ruano-Rosa ◽  
F. M. Cazorla ◽  
N. Bonilla ◽  
R. Martín-Pérez ◽  
A. De Vicente ◽  
...  

2021 ◽  
Vol 6 (3) ◽  
pp. 1
Author(s):  
Yogesh Suresh Andoji ◽  
Sutar Aruna S

Root rot of chickpea (Cicer arietinum L.) is caused by Fusarium solani. This paper describes the efficacy of Trichoderma spp. against sensitive and resistant isolates of F, solani by dual culture method under invitro conditions. Trichoderma virens, T. atroviride, T. viride, T. harzianum, T. koningiopsis, T. stilbohypoxyli,and T. pseudokoningii species were used for the antagonistic study. Results indicate that all Trichoderma species showed great antagonistic activity. But among them, T. virens, T. atroviride, T. viride showed 90% and 80 % antagonistic activity than others in case of a sensitive isolate of test fungus. The resistant isolate of the pathogen was restricting the antagonism to some extent.


Sign in / Sign up

Export Citation Format

Share Document