scholarly journals First Report of Postharvest Blue Mold decay caused by Penicillium expansum on Lemon (Citrus limon) fruit in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Ibatsam Khokhar ◽  
Jianming Chen ◽  
Junhuan Wang ◽  
Yang Jia ◽  
Yanchun Yan ◽  
...  

Lemon (Citrus limon) is one of the most important commercial (both dried and fresh) citrus fruits in China. In the spring of 2019, postharvest blue mold decay was observed at an incidence of 3-5% on lemon fruit at the local markets in Beijing, China. Fruit lesions were circular, brown, soft, and watery, and rapidly expanded at 25°C. To isolate the causal organism, small pieces (2 mm3) were cut from the lesions, surface-sterilized for 1 min in 1.5% NaOCl, rinsed three times with sterilized water, dried with sterile filter paper, placed onto potato dextrose agar (PDA) medium, and incubated at 25°C for 6 days. Eight morphologically similar single-colony fungal isolates were recovered from six lemon fruit. Colony surfaces were bluish-green on the upper surface and cream to yellow-brown one the reverse. Hyphae on colony margins were entirely subsurface and cream in color. Mycelium was highly branched, septate, and colorless, and conidiophores were 250 to 450 × 3.0 to 4.0 µm in size. Stipe of conidiophores were smooth-walled, bearing terminal penicilli, typically terverticillate or less commonly birverticillate, rami occurring singly, 16 to 23 × 3.0 to 4.0 µm, metulae in 3 to 6, measuring 12 to 15 × 3.0 to 4.0 µm. Phialides were ampulliform to almost cylindrical, in verticils of 5 to 8, measuring 8 to 11 × 2.5 to 3.2 µm with collula. Conidia were smooth-walled, ellipsoidal, measuring 3.0 to 3.5 × 2.5 to 3.0 µm. According to morphological characteristics, the fungus was identified as Penicillium expansum (Visagie et al. 2014). For molecular identification, genomic DNA of eight fungal isolates was extracted, regions of the beta-tubulin (TUB), and calmodulin (CAL) genes and ITS region, were amplified using Bt2a/Bt2b, CAL-228F/ CAL-737, and ITS1/ITS4 primers respectively. Obtained sequences of all isolates were identical to sequences of the representative isolate YC-IK12, which was submitted in the GenBank. BLAST results of YC-IK12 sequences (ITS; MT856700: TUB; MT856958: CAL; MT856959) showed 98 to 100% similarity with P. expansum accessions (NR-077154, LN896428, JX141581). For pathogenicity tests, 10 μl of conidial suspension (10 × 105 conidia/ml) from seven-day-old YC-IK12 culture was inoculated using a sterilized needle into the surface of each five asymptomatic disinfected lemons. As a control, three lemons were inoculated using sterile distilled water. All inoculated lemons were placed in plastic containers and incubated at 25°C for 7 days. Decay lesions, identical to the original observations, developed on all inoculated lemons, while control lemons remained asymptomatic. Fungus re-isolated from the inoculated lemon was identified as P. expansum on the basis morphology and Bt2a/Bt2b, CAL-228F/ CAL-737, and ITS1/ITS4 sequences. Previously, Penicillium spp. including P. expansum have been reported as post-harvest pathogens on various Citrus spp. (Louw & Korsten 2015). However, P. digitatum has been reported on lemons and P. expansum has been reported on stored Kiwifruit (Actinidia arguta), Malus, and Pyrus species in China (Tai, 1979; Wang et al. 2015). To our knowledge, this is the first report of blue mold caused by P. expansum on lemons in China. References Louw, J. P., Korsten, L. 2015. Plant Dis. 99:21-30. Tai, F.L. 1979. Sylloge Fungorum Sinicorum. Sci. Press, Acad. Sin., Peking, 1527 pages. 8097 Visagie, C.M. et al. 2014. Studies. Mycol.78: 343. Wang, C. W. et al. 2015. Plant Dis. 99:1037.

Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 147-147
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
K. S. Han ◽  
H. D. Shin

Garlic chives, Allium tuberosum Roth., are widely cultivated in Asia and are the fourth most important Allium crop in Korea. In June 2011, a leaf blight of garlic chives associated with a Septoria spp. was observed on an organic farm in Hongcheon County, Korea. Similar symptoms were also found in fields within Samcheok City and Yangku County of Korea during the 2011 and 2012 seasons. Disease incidence (percentage of plants affected) was 5 to 10% in organic farms surveyed. Diseased voucher specimens (n = 5) were deposited at the Korea University Herbarium (KUS). The disease first appeared as yellowish specks on leaves, expanding to cause a leaf tip dieback. Half of the leaves may be diseased within a week, especially during wet weather. Pycnidia were directly observed in leaf lesions. Pycnidia were amphigenous, but mostly epigenous, scattered, dark brown to rusty brown, globose, embedded in host tissue or partly erumpent, separate, unilocular, 50 to 150 μm in diameter, with ostioles of 20 to 40 μm in diameter. Conidia were acicular, straight to sub-straight, truncate at the base, obtuse at the apex, hyaline, aguttulate, 22 to 44 × 1.8 to 3 μm, mostly 3-septate, occasionally 1- or 2-septate. These morphological characteristics matched those of Septoria allii Moesz, which is differentiated from S. alliacea on conidial dimensions (50 to 60 μm long) (1,2). A monoconidial isolate was cultured on potato dextrose agar (PDA). Two isolates have been deposited in the Korean Agricultural Culture Collection (Accession Nos. KACC46119 and 46688). Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 482-bp was deposited in GenBank (JX531648 and JX531649). ITS sequence information was at least 99% similar to those of many Septoria species, however no information was available for S. allii. Pathogenicity was tested by spraying leaves of three potted young plants with a conidial suspension (2 × 105 conidia/ml), which was harvested from a 4-week-old culture on PDA. Control leaves were sprayed with sterile water. The plants were placed in humid chambers (relative humidity 100%) for the first 48 h. After 7 days, typical leaf blight symptoms started to develop on the leaves of inoculated plants. S. allii was reisolated from the lesions of inoculated plants, confirming Koch's postulates. No symptoms were observed on control plants. The host-parasite association of A. tuberosum and S. allii has been known only from China (1). S. alliacea has been recorded on several species of Allium, e.g. A. cepa, A. chinense, A. fistulosum, and A. tuberosum from Japan (4) and A. cepa from Korea (3). To the best of our knowledge, this is the first report of S. allii on garlic chives. No diseased plants were observed in commercial fields of garlic chives which involved regular application of fungicides. The disease therefore seems to be limited to organic garlic chive production. References: (1) P. K. Chi et al. Fungous Diseases on Cultivated Plants of Jilin Province, Science Press, Beijing, China, 1966. (2) P. A. Saccardo. Sylloge Fungorum Omnium Hucusque Congnitorum. XXV. Berlin, 1931. (3) The Korean Society of Plant Pathology. List of Plant Diseases in Korea, Suwon, Korea, 2009. (4) The Phytopathological Society of Japan. Common Names of Plant Diseases in Japan, Tokyo, Japan, 2000.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 417-417 ◽  
Author(s):  
J. Dutta ◽  
S. Gupta ◽  
D. Thakur ◽  
P. J. Handique

Tea [Camellia sinensis (L.) O. Kuntze] is an economically important non-alcoholic caffeine-containing beverage crop widely cultivated for leaves in India, especially in the Darjeeling district of West Bengal. In May 2012, distinct blight symptoms were observed on leaves of popular tea cultivars AV-2, Tukdah 78, Rungli Rungliot 17/144, and Bannockburn 157 in commercial tea estates of the Darjeeling district. This disease reduces yield and quality of the leaves. The initial symptoms were frequently observed on the young leaf margins and apices. Foliar symptoms are characterized by grayish to brown, semicircular or irregular shaped lesions, often surrounded by pale yellow zones up to 9 mm in diameter. The lesions later expand and the affected leaves turn grayish to dark brown and eventually the dried tissue falls, leading to complete defoliation of the plant. The disease causes damage to leaves of all ages and is severe in young leaves. A portion of the symptomatic leaf tissues were surface sterilized in 70% ethanol for 30 s, then in 2% NaClO for 3 min, rinsed three times in sterile distilled water, and plated onto potato dextrose agar (PDA). The fungal colonies were initially white and then became grayish to brown with sporulation. Conidia were spherical to sub spherical, single-celled, black, 19 to 21 μm in diameter, and were borne on a hyaline vesicle at the tip of each conidiophore. Morphological characteristics of the isolates were concurring to those of Nigrospora sphaerica (1). Moreover, the internal transcribed spacer (ITS) region of the ribosomal RNA was amplified by using primers ITS1 and ITS4 and sequenced (GenBank Accession No. KJ767520). The sequence was compared to the GenBank database through nucleotide BLAST search and the isolate showed 100% similarity to N. sphaerica (KC519729.1). On the basis of morphological characteristics and nucleotide homology, the isolate was identified as N. sphaerica. Koch's postulates were fulfilled in the laboratory on tea leaves inoculated with N. sphaerica conidial suspension (106 conidia ml−1) collected from a 7-day-old culture on PDA. Six inoculated 8-month-old seedlings of tea cultivars AV-2 and S.3/3 were incubated in a controlled environment chamber at 25°C and 80 to 85% humidity with a 12-h photoperiod. In addition, three plants of each cultivar were sprayed with sterile distilled water to serve as controls. Twelve to 14 days after inoculation, inoculated leaves developed blight symptoms similar to those observed on naturally infected tea leaves in the field. No symptoms were observed on the control leaves. The pathogen was re-isolated from lesions and its identity was confirmed by morphological characteristics. It was reported that N. sphaerica is frequently encountered as a secondary invader or as a saprophyte on many plant species and also as a causative organism of foliar disease on several hosts worldwide (2,3). To our knowledge, this is first report of N. sphaerica as a foliar pathogen of Camellia sinensis in Darjeeling, West Bengal, India, or worldwide. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971. (2) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 01, 2013. (3) E. R. Wright et al. Plant Dis. 92:171, 2008.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiujing Hong ◽  
Shijia Chen ◽  
linchao Wang ◽  
Bo Liu ◽  
Yuruo Yang ◽  
...  

Akebia trifoliata, a recently domesticated horticultural crop, produces delicious fruits containing multiple nutritional metabolites and has been widely used as medicinal herb in China. In June 2020, symptoms of dried-shrink disease were first observed on fruits of A. trifoliata grown in Zhangjiajie, China (110.2°E, 29.4°N) with an incidence about 10%. The infected fruits were shrunken, colored in dark brown, and withered to death (Figure S1A, B). The symptomatic fruits tissues (6 × 6 mm) were excised from three individual plants, surface-disinfested in 1% NaOCl for 30s and 70% ethanol solution for 45s, washed, dried, and plated on potato dextrose agar (PDA) containing 50 mg/L streptomycin sulfate in the dark, and incubated at 25℃ for 3 days. Subsequently, hyphal tips were transferred to PDA to obtain pure cultures. After 7 days, five pure cultures were obtained, including two identical to previously reported Colletotrichum gloeosporioides causing leaf anthracnose in A. trifoliata (Pan et al. 2020) and three unknown isolates (ZJJ-C1-1, ZJJ-C1-2, and ZJJ-C1-3). The mycelia of ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3 were white, and formed colonies of approximate 70 mm (diameter) in size at 25℃ after 7 days on potato sucrose agar (PSA) plates (Figure S1C). After 25 days, conidia were formed, solitary, globose, black, shiny, smooth, and 16-21 μm in size (average diameter = 18.22 ± 1.00 μm, n = 20) (Figure S1D). These morphological characteristics were similar to those of N. sphaerica previously reported (Li et al. 2018). To identify species of ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3, the internal transcribed spacer (ITS) region, β-tubulin (TUB2), and the translation elongation factor 1-alpha (TEF1-α) were amplified using primer pairs including ITS1/ITS4 (Vilgalys and Hester 1990), Bt-2a/Bt-2b (Glass and Donaldson 1995), and EF1-728F/EF-2 (Zhou et al. 2015), respectively. Multiple sequence analyses showed no nucleotide difference was detected among genes tested except ITS that placed three isolates into two groups (Figure S2). BLAST analyses determined that ZJJ-C1-1, ZJJ-C1-2 and ZJJ-C1-3 had 99.73% to N. sphaerica strains LC2705 (KY019479), 100% to LC7294 (KY019397), and 99.79-100% to LC7294 (KX985932) or LC7294 (KX985932) based on sequences of TUB2 (MW252168, MW269660, MW269661), TEF-1α (MW252169, MW269662, MW269663), and ITS (MW250235, MW250236, MW192897), respectively. These indicated three isolates belong to the same species of N. sphaerica. Based on a combined dataset of ITS, TUB2 and TEF-1α sequences, a phylogenetic tree was constructed using Maximum likelihood method through IQ-TREE (Minh et al. 2020) and confirmed that three isolates were N. sphaerica (Figure S2). Further, pathogenicity tests were performed. Briefly, healthy unwounded fruits were surface-disinfected in 0.1% NaOCl for 30s, washed, dried and needling-wounded. Then, three fruits were inoculated with 10 μl of conidial suspension (1 × 106 conidia/ml) derived from three individual isolates, with another three fruits sprayed with 10 μl sterilized water as control. The treated fruits were incubated at 25℃ in 90% humidity. After 15 days, all the three fruits inoculated with conidia displayed typical dried-shrink symptoms as those observed in the farm field (Figure S1E). The decayed tissues with mycelium and spores could be observed on the skin or vertical split of the infected fruits after 15 days’ inoculation (Figure S1F-H). Comparably, in the three control fruits, there were no dried-shrink-related symptoms displayed. The experiment was repeated twice. The re-isolated pathogens were identical to N. sphaerica determined by sequencing the ITS, TUB2 and TEF-1α. Previous reports showed N. sphaerica could cause postharvest rot disease in kiwifruits (Li et al. 2018). To our knowledge, this is the first report of N. sphaerica causing fruits dried-shrink disease in A. trifoliata in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Hongsen Cheng ◽  
De Xue Gao ◽  
Huijie Sun ◽  
Yanbin Na ◽  
Jing Xu

Sesame (Sesamum indicum L.) is an important oilseed crop in China and it is also used in food and health products. In August of 2019, a blight sesame fruit was observed in a field of Liaoyang city, Liaoning province of China. Initial disease symptoms consisted of brown or dark brown spots on fruit. With time, lesions coalesced and the whole fruit turned dark brown or black. Most of the diseased fruit had thin and small, deformed, necrotic, hardened cracked epidermal lesions. Lesions were also produced on stem and petioles leading to leaf abscission. The disease results in premature fruit death, and in turn, considerable yield losses. To determine the causal agent, symptomatic fruit with developing lesions were collected, and surface sterilized in 2% NaClO for 3 min, rinsed three times in distilled water, and plated onto PDA medium. After incubation at 25°C for 5 days, a dark olivaceous fungus with abundant, branched, brown to black, and septate hyphae was consistently isolated. Twenty single spores were separated with an inoculation needle under stereomicroscope. The conidia were in chains, brown, obclavate, ovoid or ellipsoid, with 1-6 transverse septa and 0-4 longitudinal or oblique septa 12.5 to 45 × 6.5 to 14.5 μm in size. Conidiophores were septate, light brown to olive brown, measuring 22-60 μm × 2-4 μm. The morphological characteristics of the 20 isolates all matched the description of Alternaria alternata (Simmons, 2007). The internal transcribed spacer (ITS) region of rDNA of 15 isolates was amplified using primers ITS1/ITS4 (White et al. 1990) and EF1-728F/EF1-986R (Carbone et al. 1999) and sequenced. Identical sequences were obtained and the sequence of the isolate ZMHG12 was submitted to GenBank (Accession no. MW418181 and MW700316). BLAST analysis of the sequences of the isolates of ZMHG12 showed 100% to A. alternata (KP739875 and LC132712). In pathogenicity tests, a conidial suspension (2.5 × 105 conidia per ml) was prepared from 7 days-old cultures of isolate ZMHG12 grown on PDA at 25°C. Fruit of 10 two-month-old potted sesame plants (Variety “Liaozhi 8”) were sprayed with the conidia suspension until runoff. Another 10 plants sprayed with distilled water to served as non-inoculated controls. All plants were maintained for 48 h in a humid chamber with a temperature of 25°C to 26°C, and then moved to a greenhouse. Ten days after inoculation, all fruit of inoculated plants exhibited symptoms similar to those observed in the field and non-inoculated control plants remained symptomless. The experiment was repeated twice with similar results. A. alternata has been reported as a pathogen caused leaf blight disease of sesame in Pakistan (Nayyar et al. 2017). To our knowledge, this is the first report of A.alternata causing fruit blight of sesame in China. To date, we have observed the disease on sesames in fields of Fuxin, Chaoyang and Tieling city in Liaoning Province, and Tongliao city in Inner Mongolia of China, and it has become an important disease in sesame production of China. References : Simmons E. G. 2007. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands. White T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego. Carbone I., et al. 1999. Mycologia, 91: 553-556. Nayyar, B. G., et al. 2017. Plant Pathology Journal, 33 (6): 543-553.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chung-hang Duan ◽  
Guan-ying Chen

Ficus carica L. known as common fig is one of the most profitable fruit crops in Taiwan. Their fruit are harvested for high-priced market. Common fig can be eaten fresh or dried and processed to make different food products. In September 2015, an anthracnose-like disease was widely observed on common fig fruit planted in an orchard in Lukang township (24°04'36" N, 120°27'15" E) in Changhua County, central Taiwan. Symptoms were sunken, water-soaked lesions covered with salmon-colored spore masses and were observed on all stages of fruit, especially when fruit was ripe. Four fungal isolates were collected from four diseased fruit of different plants in the same orchard. Conidia were spread on 2% water agar, and a single conidium was separated by a handmade glass needle. Fungal isolates were grown on potato dextrose agar (PDA) at 24 to 28°C with diffused light. All four strains produced white, aerial, and cottony mycelia covered with abundant salmon-colored conidial masses on PDA. The conidia were hyaline, single celled, round cylindrical on both ends, thin walled, and the contents guttulate. The sizes of conidia were 15.4 (18.5 to 13.1) × 4.73 (5.8 to 3.6) μm [average (max. to min.); length/width ratio = 3.25, n = 40]. DNA was isolated from the representative isolate FC1 and used for amplification of partial sequences of the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), β-tubulin 2 (TUB2), manganese-superoxide dismutase (SOD2), calmodulin (CAL), chitin synthase 1 (CHS-1) (Weir et al. 2012) and the intergenic region of apn2 and MAT1-2-1 gene (ApMat) genes (Sharma et al. 2013). A BLAST search against the NCBI database revealed that FC1 gene sequences [GenBank accession nos. MT192648 (ITS), MT155819 (GAPDH), MT199873 (ACT), MT199874 (TUB2), MT815916 (SOD2), MT815917 (CAL), MW684717 (CHS-1) and MT221652 (ApMat)] displayed 99.1, 98.2, 99.3, 99.6, 99.5, 100.0, 92.8 and 100.0% nucleotide identity to the respective gene sequences of Colletotrichum tropicale CBS 124949 (ICMP18653) (JX010264, JX010007, JX009489, JX010407, JX010329, JX009719, JX009870 and KC790728). Multilocus phylogenetic analysis performed with reference sequences showed that the isolate FC1 clustered with C. tropicale in accordance with BLAST results. A conidial suspension (1 × 106 conidia/mL) prepared from FC1 isolate was inoculated by spraying onto detached, ripe, healthy, non-wounded and surface-disinfected common fig fruit (cv. China, n = 4). Fruit sprayed with sterile water were used as control. Fruit were kept in a moist chamber (greater than 90% relative humidity, 24 to 28°C) for 24 h and then maintained in the lab for additional 5 days. The inoculated fruit developed lesions similar to the disease symptoms in the orchard. No symptom was observed on fruit treated with water. C. tropicale was re-isolated from symptomatic fruits and had similar morphological characteristics to FC1 isolate, thus fulfilling Koch’s postulates. The experiment was repeated once showing similar results. The FC1 isolate of C. tropicale with the identification number BCRC FU31436 has been deposited at Taiwan Bioresource Collection and Research Center. This fungus had previously been found on lotus and mango in Taiwan (Chen and Kirschner 2018; Wu et al. 2020), while the pathogenicity among the isolates from different origins is not yet known. To our knowledge, this is the first report of C. tropicale causing anthracnose on common fig fruit in Taiwan.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zong-ming Sheu ◽  
Ming-hsueh Chiu ◽  
Lawrence Kenyon

Mungbean (Vigna radiata L.) is routinely grown in the experimental fields at the headquarters of the World Vegetable Center (23°6'30.88"N, 120°17'51.31"E) for breeding, research and germplasm multiplication. In a spring 2016 mungbean trial, about 50% of the plants were affected with powdery mildew. The white, powdery-like patches first appeared on the upper leaf surfaces, and soon developed to grey patches on both sides of the leaves. Purple to brown discoloration appeared on the underside of the infected leaf. Microscopy examination revealed that the causal organism was not Erysiphe polygoni, which had previously been documented as the powdery mildew pathogen on mungbean in Taiwan (Hartman et al. 1993). The fungus produced typical structures of the powdery mildew Euoidium, anamorph of the genus Podosphaera. The mycelium consisted of septate, flexuous hyphae with indistinct appressoria. The erect conidiophores arising from superficial hyphae varied from straight or slightly curved to curled. Three to ten conidia were borne in long chains with crenate edges. Foot-cells were straight, cylindrical and measured 30 to 52 µm long. Conidia were hyaline, ellipsoid-ovoid to barrel-shaped, with fibrosin bodies, and measured 27 to 33 (mean = 30.4) × 15 to 20 (mean = 16.6) µm. Germ tubes were clavate and occasionally forked, and were produced from the lateral sites of the conidia. No chasmothecia were found in the samples. The morphological characteristics were consistent with P. xanthii (Castagne) U. Braun & Shishkoff (Braun & Cook 2012). To confirm the identity, the internal transcribed spacer (ITS) region of rDNA and partialβ-tubulin gene (TUB2) for the isolate MG3 were amplified with the primers ITS4/ITS5 (White et al. 1990) and BtuF5/BtuR7a (Ellingham et al. 2019), respectively. BLASTn analysis revealed the ITS sequence (MN833717) was 100% identical to many records of P. xanthii whereas the TUB2 sequence (MW363957) was 100% identical to a record of P. fusca (syn. P. xanthii; KC333362) in NCBI GenBank. A pathogenicity test was conducted by dusting conidia from an infected leaf onto six healthy four-week-old mungbean plants (cv ‘Tainan No. 3’). Another three plants were not inoculated and were used as control. All the plants were maintained in a greenhouse at 25 to 28°C. All inoculated plants developed powdery mildew symptoms after 10 days, whereas the control plants remained symptomless. To our knowledge, this is the first report of P. xanthii causing disease on mungbean in Taiwan. P. xanthii also has been reported on mungbean in Thailand (Meeboon et al. 2016), while other records referring to E. polygoni infecting Vigna spp. are from Brazil and Fiji (Farr & Rossman 2020). Although both P. xanthii and E. polygoni have now been reported as causing powdery mildew on mungbean in Taiwan, which species predominates or is more important remains unclear. A comprehensive survey with accurate species identification is required to develop effective management of the disease, particularly for resistance breeding.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1070-1070 ◽  
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
Y. D. Kwon ◽  
H. D. Shin

Tricyrtis macropoda Miq. (syn. T. dilatata Nakai), known as speckled toadlily, is a perennial herb native to China, Japan, and Korea. The plant has been highly praised for its beautiful flowers and rare populations in natural habitats. In September 2006, several dozen plants were heavily damaged by leaf spots and blight in cultivated plantings in the city of Pocheon, Korea. The infections with the same symptoms were repeated every year. In July 2011, the same symptoms were found on T. macropoda in the cities of Gapyeong and Osan, Korea. The leaf lesions began as small, water-soaked, pale greenish to grayish spots, which enlarged to form concentric rings and ultimately coalesced. A number of blackish acervuli were formed in the lesions. Acervuli were mostly epiphyllous, circular to ellipsoid, and 40 to 200 μm in diameter. Setae were two- to three-septate, dark brown at the base, paler upwards, acicular, and up to 100 μm long. Conidia (n = 30) were long obclavate to oblong-elliptical, sometimes fusiform-elliptical, guttulate, hyaline, and 12 to 20 × 4 to 6.5 μm (mean 15.4 × 5.2 μm). These morphological characteristics of the fungus were consistent with the description of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (2). Voucher specimens (n = 7) were deposited in the Korea University herbarium (KUS). Two isolates, KACC46374 (ex KUS-F25916) and KACC46405 (ex KUS-F26063), were deposited in the Korean Agricultural Culture Collection. Fungal DNA was extracted and the complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequences of 549 bp were deposited in Genbank (Accession Nos. JQ619480 and JQ619481). They showed 100% similarity with a sequence of C. gloeosporioides (EU32619). Isolate KACC46374 was used in a pathogenicity test. Inoculum was prepared by harvesting conidia from 3-week-old cultures on potato dextrose agar. A conidial suspension (2 × 106 conidia/ml) was sprayed onto 15 leaves of three plants. Three noninoculated plants served as controls. Plants were covered with plastic bags to maintain 100% relative humidity for 24 h and then kept in a greenhouse (22 to 28°C and 70 to 80% RH). After 5 days, typical leaf spot symptoms, identical to the ones observed in the field, started to develop on the leaves of inoculated plants. No symptoms were observed on control plants. C. gloeosporioides was reisolated from the lesions of inoculated plants, thus fulfilling Koch's postulates. An anthracnose associated with C. tricyrtii (Teng) Teng was recorded on T. formosana and T. latifolia in China (3) and on T. formosana in Taiwan (1), respectively, without etiological studies. The morphological features of C. tricyrtii are within the variation of C. gloeosporioides (2). To our knowledge, this is the first report of anthracnose of T. macropoda. This report has significance to indigenous plant resource conservation managers and scientists because T. macropoda has been listed as one of the 126 “Rare and Endangered Plants” by the Korea Forest Service since 1991. References: (1) K. Sawada. Rep. Dept. Agric. Gov. Res. Inst. Formosa 87: 1, 1944. (2) B. C. Sutton. Pages 1–27 in: Colletotrichum Biology, Pathology and Control. J. A. Bailey and M. J. Jeger, eds. CAB International, Wallingford, U.K. 1992. (3) S. C. Teng. Contrib. Biol. Lab. Sci. Soc. China 8:36, 1932.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1823-1823 ◽  
Author(s):  
K. A. Peter ◽  
I. Vico ◽  
V. Gaskins ◽  
W. J. Janisiewicz ◽  
R. A. Saftner ◽  
...  

Blue mold decay occurs during long term storage of apples and is predominantly caused by Penicillium expansum Link. Apples harvested in 2010 were stored in a controlled atmosphere at a commercial Pennsylvania apple packing and storage facility, and were examined for occurrence of decay in May 2011. Several decayed apples from different cultivars, exhibiting blue mold symptoms with a sporulating fungus were collected. One isolate recovered from a decayed ‘Golden Delicious’ apple fruit was identified as P. carneum Frisvad. Genomic DNA was isolated, 800 bp of the 3′ end of the β-tubulin locus was amplified using gene specific primers and sequenced (4). The recovered nucleotide sequence (GenBank Accession No. JX127312) indicated 99% sequence identity with P. carneum strain IBT 3472 (GenBank Accession No. JF302650) (3). The P. carneum colonies strongly sporulated and had a blue green color on potato dextrose agar (PDA), Czapek yeast autolysate agar (CYA), malt extract agar (MEA), and yeast extract sucrose agar (YES) media at 25°C after 7 days. The colonies also had a beige color on plate reverse on CYA and YES media. The species tested positive for the production of alkaloids, as indicated by a violet reaction for the Ehrlich test, and grew on CYA at 30°C and on Czapek with 1,000 ppm propionic acid agar at 25°C; all of which are diagnostic characters of this species (2). The conidiophores were hyaline and tetraverticillate with a finely rough stipe. Conida were produced in long columns, blue green, globose, and averaged 2.9 μm in diameter. To prove pathogenicity, Koch's postulates were conducted using 20 ‘Golden Delicious’ apple fruits. Fruits were washed, surface sterilized with 70% ethanol, and placed onto fruit trays. Using a nail, 3-mm wounds were created and inoculated with 50 μl of a 106/ml conidial suspension or water only as a negative control. The fruit trays were placed into boxes and were stored in the laboratory at 20°C for 7 days. The inoculated fruit developed soft watery lesions, with hard defined edges 37 ± 4 mm in diameter. The sporulating fungus was reisolated from infected tissue of all conidia inoculated apples and confirmed to be P. carneum by polymerase chain reaction (PCR) using the β-tubulin locus as described. Water inoculated control apples were symptomless. Originally grouped with P. roqueforti, P. carneum was reclassified in 1996 as a separate species (1). P. carneum is typically associated with meat products, beverages, and bread spoilage and produces patulin, which is not produced by P. roqueforti (1,2). Our isolate of P. carneum was susceptible to the thiabendazole (TBZ) fungicide at 250 ppm, which is below the recommended labeled application rate of 600 ppm. The susceptibility to TBZ suggests that this P. carneum isolate has been recently introduced because resistance to TBZ has evolved rapidly in P. expansum (4). To the best of our knowledge, P. carneum has not previously been described on apple, and this is the first report of P. carneum causing postharvest decay on apple fruits obtained from storage in Pennsylvania. References: (1) M. Boyson et al. Microbiology 142:541, 1996. (2) J. C. Frisvad and R. A. Samson. Stud. Mycol. 49:1, 2004. (3) B. G. Hansen et al. BMC Microbiology 11:202, 2011. (4) P. L. Sholberg et al. Postharvest Biol. Technol. 36:41, 2005.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 282-282
Author(s):  
K. Vrandečić ◽  
J. Ćosić ◽  
D. Jurković ◽  
I. Stanković ◽  
A. Vučurović ◽  
...  

Lavandula × intermedia Emeric ex Loiseleur, commonly known as lavandin, is an aromatic and medicinal perennial shrub widely and traditionally grown in Croatia. The lavandin essential oil is primarily used in perfumery and cosmetic industries, but also possesses anti-inflammatory, sedative, and antibacterial properties. In June 2012, severe foliar and stem symptoms were observed on approximately 40% of plants growing in a commercial lavandin crop in the locality of Banovo Brdo, Republic of Croatia. Initial symptoms on lower leaves included numerous, small, oval to irregular, grayish brown lesions with a slightly darker brown margin of necrotic tissue. Further development of the disease resulted in yellowing and necrosis of the infected leaves followed by premature defoliation. Similar necrotic oval-shaped lesions were observed on stems as well. The lesions contained numerous, dark, sub-globose pycnidia that were immersed in the necrotic tissue or partly erumpent. Small pieces of infected internal tissues were superficially disinfected with 50% commercial bleach (4% NaOCl) and placed on potato dextrose agar (PDA). A total of 10 isolates from leaves and five from stems of lavandin formed a slow-growing, dark, circular colonies with raised center that produced pycnidia at 23°C, under 12 h of fluorescent light per day. All 15 recovered isolates formed uniform hyaline, elongate, straight or slightly curved conidia with 3 to 4 septa, with average dimensions of 17.5 to 35 × 1.5 to 2.5 μm. Based on the morphological characteristics, the pathogen was identified as Septoria lavandulae Desm., the causal agent of lavender leaf spot (1,2). Pathogenicity of one selected isolate (428-12) was tested by spraying 10 lavandin seedlings (8 weeks old) with a conidial suspension (106 conidia/ml) harvested from a 4-week-old monoconidial culture on PDA. Five lavandin seedlings, sprayed with sterile distilled water, were used as negative control. After 5 to 7 days, leaf spot symptoms identical to those observed on the source plants developed on all inoculated seedlings and the pathogen was successfully re-isolated. No symptoms were observed on any of the control plants. Morphological identification was confirmed by amplification and sequencing of the internal transcribed spacer (ITS) region of rDNA (3). Total DNA was extracted directly from fungal mycelium with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and PCR amplification performed with primers ITS1F/ITS4. Sequence analysis of ITS region revealed at least 99% identity between the isolate 428-12 (GenBank Accession No. KF373078) and isolates of many Septoria species; however, no information was available for S. lavandulae. To our knowledge, this is the first report of Septoria leaf spot of lavandin caused by S. lavandulae in Croatia. Since the cultivation area of lavandin plants has been increasing in many continental parts of Croatia, especially in Slavonia and Baranja counties, the presence of a new and potentially harmful disease may represent a serious constraint for lavandin production and further monitoring is needed. References: (1) T. V. Andrianova and D. W. Minter. IMI Descriptions of Fungi and Bacteria, 142, Sheet 1416, 1999. (2) R. Bounaurio et al. Petria 6:183, 1996. (3) G. J. M. Verkley et al. Mycologia 96:558, 2004.


Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1354-1354 ◽  
Author(s):  
H. Han ◽  
Y.-J. Chung ◽  
S.-C. Shin

The genus Bursaphelenchus Fuchs, 1937 contains approximately 90 species (3) that are morphologically similar. Pine wood nematode, Bursaphelenchus xylophilus (4) Nickle, 1970, is the causal organism of pine wilt disease and accurate identification is essential for diagnosis of the disease. In Korea, pine wilt disease was first reported in 1988 and devastated 6,800 ha of pine forest through 2008. For a survey of trees with pine wilt disease, wood samples were taken randomly from dead Pinus koraiensis in Namyangju, Gyeonggi Province in Korea. The extracted nematodes from dead trees were maintained in culture on Botrytis cinerea and morphological characteristics were observed with an inverted light microscope (Leica DE/DMI 3000B). Identification of Bursaphelenchus spp. based on morphological characteristics is difficult, especially for identification of juveniles that carry few morphological features for species identification. The internal transcribed spacer (ITS) region in ribosomal DNA provides useful molecular diagnostic markers for this genus (1). The nematodes were provisionally identified as Bursaphelenchus pinophilus based on the characteristic long and arcuate body shape, male spicule with distinctive rostrum and small cucullus, female vulval flap, and mucronate conical tail. Other Bursaphelenchus spp. with vulval flaps and spicules with cucullus are B. xylophius, B. mucronatus, B. abruptus, and B. pinophilus. For molecular diagnosis, DNA was extracted from more than 30 individual nematodes with a DNeasy Kit (Qiagen, Valencia, CA) and ITS regions 1, 2, and 5.8S in rDNA were amplified by PCR (US/PTC-0220; Bio Rad, Hercules, CA). The ITS-restriction fragment length polymorphism pattern was consistent with that of B. pinophilus (2). The ITS rDNA sequence of B. pinophilus from Korean pines had a 98% sequence homology to that of B. pinophilus in GenBank (Accession No. AM160664). The pathogenicity of B. pinophilus has not been determined. To our knowledge, this is the first report of B. pinophilus on P. koraiensis, but it was previously reported from Poland, Germany, and Portugal on P. sylvestris and P. pinaster (1). References: (1) H. Braasch. EPPO Bull. 31:127, 2001. (2) W. Burgermeister et al. Russ. J. Nematol. 13:29, 2005. (3) R. Sriwati et al. Nematology 10:1, 2008. (4) G. Steiner and E. M. Buhrer. J. Agric. Res. 48:946, 1934.


Sign in / Sign up

Export Citation Format

Share Document