scholarly journals First Report of Diaporthe australafricana Associated with Stem Canker on Blueberry in Chile

Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 768-768 ◽  
Author(s):  
B. A. Latorre ◽  
K. Elfar ◽  
J. G. Espinoza ◽  
R. Torres ◽  
G. A. Díaz

Stem cankers of blueberry (Vaccinium corymbosum L.) have been observed on as much as 15% of the plants in plantations in central and southern Chile since 2006. Symptoms consisted of apical necrosis of the shoots and brown-to-reddish necrotic lesions on the stems. Internally, a brown-to-reddish discoloration of the vascular tissue can be observed. Twenty, single-plant samples were collected in 12 blueberry plantings (approximately 33°27′ to 40°53′S). Isolations from the margins of the necrotic lesions on the stems were made by plating small pieces (5 mm) on potato dextrose agar acidified with 0.5 μl/ml of 92% lactic acid (APDA). The plates were incubated at 20°C for 5 to 7 days, and hyphal tips of white colonies with septate and hyaline mycelium were transferred to APDA. Colonies were then transferred to autoclaved Pinus radiata needles on 2% water agar and incubated for 20 days at 20°C. Twelve isolates producing black pycnidia and alpha conidia were tentatively identified as a Phomopsis sp. (teleomoph Diaporthe Nitschke). Other fungi, including Botryosphaeriaceae spp. and Pestalotiopsis spp., were also isolated. Alpha conidia were smooth, unicellular, hyaline, fusoid, biguttulate, and 6.4 to 7.9 × 2.3 to 3.3 μm (n = 20). Beta conidia were not observed. The internal transcribed spacer (ITS) region of the rDNA was amplified using primers ITS1 and ITS2 (4) and sequenced. BLASTn analysis of the 473-bp fragment (GenBank Accession No. JQ045712) showed 100% identity to Diaporthe australafricana Crous & J.M. van Niekerk from Vitis vinifera (3). The pathogenicity of D. australafricana was studied on blueberry cv. O'Neal using detached stems (n = 4) in the laboratory, on 2-year-old potted plants (n = 4) in a greenhouse, and on attached stems of mature plants (n = 4) established in the ground. Inoculations were done by placing mycelial plugs taken from 7-day-old APDA cultures in a 7-mm long incision made on the stems. Inoculations with sterile mycelium plugs served as negative controls. Inoculation sites were wrapped with Parafilm to avoid rapid dehydration. Dark brown, necrotic lesions on the internal tissues were obtained on all inoculated stems 15 days after inoculation. Mean lesion lengths were 18.0 ± 7.4 mm on detached stems, 7.8 ± 6.9 mm on stems of 2-year-old plants, and 7.3 ± 2.5 mm on mature plants in the field. No symptoms developed on control stems. Reisolations were successful in 100% of the inoculated stems and D. australafricana was confirmed by the presence of pycnidia and alpha conidia. To our knowledge, this is the first report of D. australafricana causing stem canker in V. corymbosum. Previously, this pathogen has been reported to be affecting Vitis vinifera in Australia and South Africa (3). These results do not exclude that other plant-pathogenic fungi may be involved in this syndrome (1,2). References: (1) J. G. Espinoza et al. Plant Dis 92:1407, 2008. (2) J. G. Espinoza et al. Plant Dis. 93:1187, 2009. (3) J. M. van Niekerk et al. Australas. Plant Pathol. 34:27, 2005. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, NY, 1990.

Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 174-174 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Calendula officinalis L. (Asteraceae) (pot marigold or English marigold) is an ornamental species grown in gardens and as potted plants for the production of cut flower. It was also used in ancient Greek, Roman, Arabic, and Indian cultures as a medicinal herb as well as a dye for fabrics, foods, and cosmetics. During the summer of 2007, severe outbreaks of a previously unknown powdery mildew were observed on plants in several gardens near Biella (northern Italy). Both surfaces of leaves of infected plants were covered with dense, white mycelia and conidia. As the disease progressed, infected leaves turned yellow and died. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, born in short chains (four to six conidia per chain), and measured 27.0 to 32.1 (31.4) × 12.9 to 18.4 (18.2) μm. Conidiophores measured 49 to 77.3 (67.2) × 8 to 13.3 (10.8) μm and showed a foot cell measuring 44 to 59 (51.9) × 9.3 to 12.6 (11.3) μm followed by one shorter cell measuring 15.6 to 18.9 (17.6) × 10.4 to 13.6 (12.2) μm. Fibrosin bodies were present. Chasmothecia were spherical, amber colored, with a diameter of 89 to 100 (94.5) μm. Each chasmothecium contained one ascus with eight ascospores. On the basis of its morphology, the causal agent was determined to be a Podosphaera sp. (2). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 588 bp showed a 100% homology with the sequence of Podosphaera xanthii (2). The nucleotide sequence has been assigned GenBank Accession No. EU100973. Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy C. officinalis plants. Five plants were inoculated. Five noninoculated plants served as control. Plants were maintained in a greenhouse at temperatures ranging from 20 to 26°C. Eleven days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on C. officinalis in Italy. C. officinalis was previously described as a host to Sphaerotheca fuliginea (synonym S. fusca) in Great Britain (4) as well as in Romania (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (3) E. Eliade. Rev. Appl. Mycol. 39:710, 1960. (4) F. J. Moore. Rev. Appl. Mycol. 32:380, 1953.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 845-845 ◽  
Author(s):  
C. N. Xu ◽  
Z. S. Zhou ◽  
Y. X. Wu ◽  
F. M. Chi ◽  
Z. R. Ji ◽  
...  

Blueberry (Vaccinium spp.) is becoming increasingly popular in China as a nutritional berry crop. With the expansion of blueberry production, many diseases have become widespread in different regions of China. In August of 2012, stem and leaf spots symptomatic of anthracnose were sporadically observed on highbush blueberries in a field located in Liaoning, China, where approximately 15% of plants were diseased. Symptoms first appeared as yellow to reddish, irregularly-shaped lesions on leaves and stems. The lesions then expanded, becoming dark brown in the center and surrounded by a reddish halo. Leaf and stem tissues (5 × 5 mm) were cut from the lesion margins and surface-disinfected in 70% ethanol for 30 s, followed by three rinses with sterile water before placing on potato dextrose agar (PDA). Plates were incubated at 28°C. Colonies were initially white, becoming grayish-white to gray with yellow spore masses. Conidia were one-celled, hyaline, and cylindrical with rounded ends, measuring 15.0 to 25.0 × 4.0 to 7.5 μm. No teleomorph was observed. The fungus was tentatively identified as Colletotrichum gloeosporioides (PenZ.) PenZ & Sacc. (teleomorph Glomerella cingulata (Stoneman) Spauld. & H. Schrenk) based on morphological characteristics of the colony and conidia (1). Genomic DNA was extracted from isolate XCG1 and the internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1–5.8S-ITS2) was amplified with primer pairs ITS1 and ITS4. BLAST searches showed 99% identity with C. gloeosporioides isolates in GenBank (Accession No. AF272779). The sequence of isolate XCG1 (C. gloeosporioides) was deposited into GenBank (JX878503). Pathogenicity tests were conducted on 2-year-old potted blueberries, cv. Berkeley. Stems and leaves of 10 potted blueberry plants were wounded with a sterilized needle and sprayed with a suspension of 105 conidia per ml of sterilized water. Five healthy potted plants were inoculated with sterilized water as control. Dark brown lesions surrounded by reddish halos developed on all inoculated leaves and stems after 7 days, and the pathogen was reisolated from lesions of 50% of inoculated plants as described above. The colony and conidial morphology were identical to the original isolate XCG1. No symptoms developed on the control plants. The causal agent of anthracnose on blueberry was identified as C. gloeosporioides on the basis of morphological and molecular characteristics, and its pathogenicity was confirmed with Koch's postulates. Worldwide, it has been reported that blueberry anthracnose might be caused by C. acutatum and C. gloeosporioides (2). However, we did not isolate C. acutatum during this study. To our knowledge, this is the first report of stem and leaf anthracnose of blueberry caused by C. gloeosporioides in China. References: (1) J. M. E. Mourde. No 315. CMI Descriptions of Pathogenic Fungi and Bacteria. Kew, Surrey, UK, 1971. (2) N. Verma, et al. Plant Pathol. 55:442, 2006.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1478-1478 ◽  
Author(s):  
B. A. Pérez ◽  
M. F. Berretta ◽  
E. Carrión ◽  
E. R. Wright

In 2009, a highbush blueberry (Vaccinium corymbosum L. ‘O'Neal’) field located in Rojas, Buenos Aires Province showed 30% of plants with dry or dead branches. Disinfected root pieces were placed on water agar and incubated at 24°C. A fungal colony was obtained and purified by successive transfers of an individual hyphal tip from a sparsely growing colony. Colony color and growth rate were evaluated in potato dextrose agar where the fungus produced white-to-pale pink colonies and grew 3.5 cm after 5 days. The fungus was studied on Spezieller Nährstoffarmer agar (2), carnation leaf-piece agar, and KCl agar where it produced abundant single-celled hyaline microconidia in moderate-length chains and in false heads originated from monophialides and polyphialides. Microconidia measured 6 to 12 × 2 to 3 μm (average 8 × 2.3 μm). On KCl, chains of microconidia and tan-to-light cream sporodochia with 3- to 5-septate, slender, relatively straight macroconidia were easily observed after 4 and 10 days, respectively. Macroconidia measured 38 to 48 × 3.5 to 4 μm (average 43.9 × 3.9 μm). Chlamydospores and sclerotia were not present. Data coincided with the description for Fusarium proliferatum (Matsush.) Niremberg ex Gerlach & Niremberg. The isolate was deposited in the IMYZA Microbial Collection as INTA-IMC 144. The fungus was cultured in 100 ml of Czapek-Dox supplemented with sucrose, peptone, yeast extract, sodium nitrate, and vitamins for 4 days. Genomic DNA was obtained with a DNA extraction kit, PCR amplified with primers ITS1 and ITS4 for the internal transcribed spacer (ITS) region of ribosomal genes, and sequenced. The nucleotide sequence (Accession No JF913468) was compared with GenBank records. The sequence shared 99% identity with Accession No HQ113948 for F. proliferatum. Pathogenicity was confirmed in 1-year-old ‘O'Neal’ plants. A 10-ml suspension (2.4 × 106 conidia/ml in sterile distilled water) was applied to six potted plants grown in sterilized potting mix. Roots were superficially wounded with a needle. Control plants were treated with sterile distilled water. Plants were incubated at 24°C and a 12-h photoperiod. After 90 days, plants showed root rot, leaf chlorosis, and branch necrosis followed by plant death. Control plants remained healthy. F. proliferatum was reisolated from diseased roots of inoculated plants. This fungus was previously cited in Argentina on asparagus (1), corn (1,3), and oat (4). To our knowledge, this is the first report of F. proliferatum as a root pathogen of highbush blueberry in Argentina. References: (1) G. Lori et al. Plant Dis. 82:1405, 1998. (2) H. I. Nirenberg. Releases Fed. Biol. Res. Ctr. Agric. For. (Berlin-Dahlem) 169:1, 1976. (3) D. A. Sampietro et al. Fung. Biol. 114:74, 2010. (4) S. A. Stenglein et al. Plant Dis. 94:783, 2010.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 160-160 ◽  
Author(s):  
F. M. Mathew ◽  
K. Y. Rashid ◽  
T. J. Gulya ◽  
S. G. Markell

During September 2012, Phomopsis stem canker was observed on sunflowers (Helianthus annuus L.) in a production field during seed filling with an average incidence of 15% in Morden, Manitoba (approximately 49°11′N and 98°09′W). The infected plants had elongated, brown-black lesions surrounding the leaf petiole, with numerous pycnidia, pith damage, and mid-stem lodging. Twenty sunflower plants were randomly sampled from the field. Isolations were made from the margins of the necrotic stems lesions by plating small pieces (5 mm) on potato dextrose agar (PDA) amended with 0.02% streptomycin sulfate. Plates were incubated at 25°C for 14 days under a 12-h photoperiod, and hyphal tips of white to grey colonies were transferred to PDA. Five isolates producing black pycnidia (occasionally with ostiolate beaks) and alpha conidia were tentatively identified as a Diaporthe sp. Alpha conidia were ellipsoidal, hyaline, and 6.5 to 8.5 × 2.5 to 3.5 μm. DNA was extracted from the mycelium of five isolates, and the ITS region was amplified and sequenced using primers ITS5 and ITS4 (4). BLASTn analysis of the 600-bp fragment (GenBank Accession Nos. KM391960 to KM391964) showed that the best match was Phomopsis sp. AJY-2011a strain T12505G (Diaporthe gulyae R.G. Shivas, S.M. Thompson & A.J. Young [3], Accession No. JF431299) from H. annuus with identities = 540/540 (100%) and gaps = 0/540 (0%). The five D. gulyae isolates were tested for pathogenicity on a sunflower confection inbred cv. HA 288 using the stem-wound method (2). Four-week-old sunflower plants (10 plants per isolate) were inoculated by wounding the stems on the second internode with a micropipette tip and placing a Diaporthe-infested mycelial plug on the wound. All plugs were attached to the wound with Parafilm. The pots were placed on the greenhouse benches at 25°C under a 16-h light/dark cycle. At 3 days after inoculation, dark brown lesions were observed on the stems extending upward from the inoculation site. Stem and leaves wilted, causing plant death 14 days after inoculation. Disease severity was calculated as a percentage of stem lesion (lesion length/stem length × 100%) at 14 days after inoculation. Significant differences (P ≤ 0.05) in disease severity were observed among D. gulyae isolates, which ranged from 34.9 to 100.0% (n = 5). Ten control plants similarly treated with sterile PDA plugs did not display symptoms. To complete Koch's postulates, D. gulyae was re-isolated from the inoculated stems, and the pathogen's identity was confirmed via sequencing of the ITS regions using primers ITS5 and ITS4 (4). The pathogen was not isolated from the control plants. D. gulyae was first reported as a pathogen on H. annuus in Australia and United States in 2011 (1,3). The pathogen was determined to be as or more aggressive than the other causal agents of Phomopsis stem canker (2,3), and its identification in both countries was circumstantially associated with increased incidence and yield loss in commercial production fields (1,3). In Canada, Phomopsis stem canker has been observed in sunflower fields over the last 10 years at low incidences, especially in years with above-normal temperatures during the sunflower growing season; however, the causal agent was not confirmed. To the best of our knowledge, this is the first report of D. gulyae causing Phomopsis stem canker on sunflowers in Canada. Since there is currently no known resistance to D. gulyae in sunflower, this newly discovered pathogen may become a threat to sunflower production in Canada. References: (1) F. Mathew et al. Phytopathology 101:S115, 2011. (2) F. Mathew et al. Phytopathology 103:S2.91, 2013. (3) S. M. Thompson et al. Persoonia 27:80, 2011. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 130-130 ◽  
Author(s):  
M. Troisi ◽  
D. Bertetti ◽  
A. Garibaldi ◽  
M. L. Gullino

Gerbera (Gerbera jamesonii) is one of the top 10 economically important flower crops in Europe as well as the United States. The acreage devoted to this crop continues to increase especially for use in landscape typologies. Abundant flowering from spring until autumn allows the use of this plant to decorate gardens, terraces, and borders. During the summer of 2009, an outbreak of a previously unknown powdery mildew was observed on potted gerbera ‘Mini Yellow’ growing in a private garden in Turin (northern Italy). Adaxial leaf surfaces were covered with white mycelium and conidia, and as the disease progressed, infected leaves turned yellow and died. Conidia were hyaline, ellipsoid, borne in chains (three conidia per chain), and measured 16 to 45 × 10 to 30 μm. Conidiophores measured 109 to 117 × 11 to 13 μm and had a foot cell measuring 72 to 80 × 11 to 12 μm followed by two shorter cells measuring 19 to 29 × 11 to 14 and 20 to 32 × 12 to 14 μm. Fibrosin bodies were absent and chasmothecia were not observed in the collected samples. On the basis of its morphology, the pathogen was identified as Golovinomyces cichoracearum. The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS1/ITS4 and sequenced. BLASTn analysis of the 548-bp fragment showed an E-value of 0.0 and a percentage homology of 99% with G. cichoracearum isolated from Coreopsis leavenworthii (Accession No. DQ871605) confirming diagnosis inferred by morphological analysis. The nucleotide sequence has been assigned GenBank Accession No. GQ870342. Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of three healthy potted plants of Gerbera ‘Mini Yellow’. Three noninoculated plants served as the control. Plants were maintained in a greenhouse at temperatures ranging between 20 and 30°C. Inoculated plants developed signs and symptoms after 8 days, whereas control plants remained healthy. The fungus present on inoculated plants was morphologically identical to that originally observed on diseased plants. To our knowledge, this is the first report of the presence of powdery mildew caused by G. cichoracearum on gerbera in Italy. Specimens are available at the Agroinnova Collection at the University of Torino. Gerbera is also susceptible to different powdery mildews. Powdery mildew of Gerbera jamesonii caused by Sphaerotheca fusca was reported in Italy (4). G. cichoracearum on Gerbera jamesonii was reported in North America (2), Argentina (3), and Switzerland (1). References: (1) A. Bolay. Cryptogam. Helv. 20:1, 2005. (2) M. Daughtrey et al. Page 39 in: Compendium of Flowering Potted Plant Diseases. The American Phytopathological Society, St Paul, MN, 1995. (3) R. Delhey et al. Schlechtendalia 10:79, 2003. (4) F. Zaccaria et al. Ann. Fac. Agrar. Univ. Stud. di Napoli Federico II 34:44, 2000.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1133-1133
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Calceolaria integrifolia L. is an ornamental species grown as a potted plant in Liguria, northern Italy. In the winter of 2006, extensive chlorosis was observed on approximately 10% of the 10-month-old potted plants in a commercial greenhouse. Initial symptoms included stem necrosis and darkening of leaves. As stem and foliar necrosis progressed, infected plants wilted and died. Wilt occurred on young plants within a few days after the initial appearance of symptoms. Infected plants were characterized by the presence of soft, watery tissues that became covered with white mycelium and dark sclerotia. The diseased stem tissue was surface sterilized for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate. Sclerotinia sclerotiorum (Lib.) de Bary (3) was consistently recovered from infected stem pieces. Sclerotia observed on infected plants measured 0.7 to 1.0 × 2.8 to 4.4 mm (average 1.6 to 2.1 mm). Sclerotia produced on PDA measured 1.0 to 1.1 × 3.0 to 4.2 mm (average 1.7 to 2.3 mm). The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 522-bp amplicon resulted in 100% homology with the sequence of S. sclerotiorum. The nucleotide sequence has been assigned GenBank Accession No. EU 627004. Pathogenicity of two isolates obtained from infected plants was confirmed by inoculating 10 120-day-old plants grown in individual 14-cm-diameter pots maintained in a greenhouse under partial shade. Inoculum consisted of 1 cm2 of mycelial plugs excised from a 10-day-old PDA culture of each isolate. Plants were inoculated by placing a mycelial plug on the soil surface around the base of each plant. Ten plants were inoculated per isolate and an equal number of noninoculated plants served as controls. The trial was repeated once. All plants were kept at temperatures ranging between 8 and 17°C (average 12.5°C) and watered as needed. All inoculated plants developed leaf yellowing within 8 days after inoculation, soon followed by the appearance of white mycelium and sclerotia, and then by wilt. Control plants remained symptomless. S. sclerotiorum was reisolated from the stems of inoculated plants. S. sclerotiorum was reported previously on a Calceolaria sp. in the United States (2). To our knowledge, this is the first report of white mold on C. integrifolia in Italy. The economic importance of this disease is currently limited. References (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) Anonymous. USDA Agric. Handb. 165:441, 1960. (3) N. F. Buchwald. Den. Kgl. Veterin.er-og Landbohojskoles Aarsskrift 75, 1949.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1246-1246 ◽  
Author(s):  
Y. G. Yang ◽  
X. H. Wu

Potato (Solanum tuberosum L.) stem canker caused by Rhizoctonia solani occurs in potato-growing regions all over the world and can result in severe losses in crop yield and quality. In late July 2011, potato subterraneous stems with stem cankers composed of brownish, sunken lesions were observed at 15% incidence in seven sites in Jilin Province, northeast China. Samples were collected, and stem pieces (each 5 mm long) taken from the margins of the healthy and diseased tissues were surface-disinfested with 0.5% NaOCl for 2 min, rinsed with sterilized water, dried, then placed on potato dextrose agar at 25°C in the dark. Three (designated JL-3, JL-5-1, and JL-6) of seven Rhizoctonia isolates that developed from single hyphal tip transfers were identified preliminarily as binucleate Rhizoctonia (BNR) isolates (teleomorph Ceratobasidium Rogers). The colonies were white or light gray with fluffy aerial hyphae and no sclerotia after 14 days in culture. Hyphal cells were binucleate when stained with 4′-6-diamidino-2-phenylindole. Average hyphal diameters (mean ± standard deviation) of isolates JL-3, JL-5-1, and JL-6 were 4.8 ± 0.5 μm (range 4.1 to 5.6 μm), 4.4 ± 0.4 μm (range 3.9 to 5.2 μm), and 4.5 ± 0.3 μm (range 4.0 to 5.0 μm), respectively. The internal transcribed spacer (ITS) region of ribosomal DNA was amplified from genomic DNA with primers ITS1 and ITS4 and sequenced. BLASTn analysis indicated that the resulting sequences (GenBank Accession Nos. JX885459, JX885460, and JX885461 for JL-3, JL-5-1, and JL-6, respectively) were 100% identical to that of a Ceratobasidium sp. AG-A isolate CHR08-10 (HQ270171). So the three isolates were identified as BNR AG-A based on morphological and molecular characteristics. To determine pathogenicity of the BNR isolates, potato seed tubers (cv. Favorita), each with 3- to 5-mm-long sprouts, were inoculated with wheat seeds (sterilized by autoclaving twice at 121°C for 1 h with a 24-h interval between autoclavings) colonized with each isolate (1). One sprouted potato tuber was planted in a plastic pot with a single colonized wheat seed placed 10 mm above the uppermost sprout tip in a sand/sawdust mixture (1:2 v/v). Plants were incubated in a glasshouse at 25 to 27°C, and assessed after 21 days. The test was performed on 20 plants/isolate and the experiment was repeated. The incidence of plants inoculated with JL-3, JL-5-1, and JL-6 that developed stem canker symptoms averaged 11.1, 23.5, and 28.6%, respectively, whereas all control plants inoculated with sterilized wheat seeds remained asymptomatic. Rhizoctonia spp. were not reisolated from the control plants, whereas BNR isolates were reisolated consistently from symptomatic stems of the inoculated plants, and the identity confirmed by morphological and molecular characteristics as described above, fulfilling Koch's postulates. BNR AG-A has been reported to be pathogenic on soybean (Glycine max), pea (Pisum sativum), snap bean (Phaseolus vulgaris), and pak choi (Brassica chinensis) in China (4). Isolates of R. solani AG-3 are most often associated with potato stem canker (2), although unidentified BNR isolates were reported to cause mild symptoms on potato sprouts in Finland (1), and small lesions on potato roots and stems in the United Kingdom (3). To our knowledge, this is the first report of BNR AG-A causing potato stem canker in Jilin Province, one of the main potato-producing areas of China. References: (1) M. J. Lehtonen et al. Plant Pathol. 57:141, 2008. (2) L. Tsror. J. Phytopatology 158:649, 2010. (3) J. W. Woodhall et al. New Dis. Rep. 23:31, 2011. (4) G. H. Yang et al. J. Phytopathology 153:333, 2005.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1160-1160
Author(s):  
F. Flores ◽  
N. R. Walker

Sandbur (Cenchrus incertus Curtis) is a warm-season, annual, noxious, grassy weed native to southern North America. It is common in sandy, disturbed soils and can also be found in home lawns and sport fields where low turf density facilitates its establishment. In July 2013, after a period of frequent rainfall and heavy dew, symptoms of dollar spot-like lesions (1) were observed on sandbur plants growing in a mixed stand of turf-type and native warm-season grasses in Logan County, Oklahoma. Lesions, frequently associated with leaf sheaths, were tan and surrounded by a dark margin. Symptomatic leaves were surface sterilized and plated on potato dextrose agar amended with 10 ppm rifampicin, 250 ppm ampicillin, and 5 ppm fenpropathrin. After incubation, a fungus morphologically identical to Sclerotinia homoeocarpa Bennett was consistently isolated. The nuclear ribosomal internal transcribed spacer (ITS) region of two different isolates, SCL2 and SCL3, were amplified using primers ITS4 and ITS5 (2). The DNA products were sequenced and BLAST analyses were used to compare sequences with those in GenBank. The sequence for isolate SLC2 was 869 bp, contained a type I intron in the 18S small subunit rDNA, and was identical to accession EU123803. The ITS sequence for isolate SLC3 was 535 bp and identical to accession EU123802. Twenty-five-day-old seedlings of C. incertus were inoculated by placing 5-mm-diameter agar plugs, colonized by mycelia of each S. homoeocarpa isolate, onto two of the plants' leaves. Plugs were held in place with Parafilm. Two plants were inoculated with each isolate and sterile agar plugs were placed on two leaves of another seedling as control. Plants were incubated in a dew chamber at 20°C and a 12-h photoperiod. After 3 days of incubation, water-soaked lesions surrounded by a dark margin appeared on inoculated plants only. Fungi that were later identified as S. homoeocarpa isolates SLC2 and SLC3 by sequencing of the ITS region were re-isolated from symptomatic leaves, fulfilling Koch's postulates. To our knowledge, this is the first report of dollar spot on sandbur. References: (1) R. W. Smiley et al. Page 22 in: Compendium of Turfgrass Diseases. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2005. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1285-1285 ◽  
Author(s):  
J. Auger ◽  
M. Esterio ◽  
I. Pérez ◽  
W. D. Gubler ◽  
A. Eskalen

Phaeomoniella chlamydospora (W. Gams, Crous. M.J. Wingfield & L. Mugnai) Crous & Gams (= Phaeoacremonium chlamydosporum) was isolated during the growing seasons of 2003-2004 from roots, trunks, and cordons of grapevines, including cvs. Cabernet Sauvignon, Merlot, Pinot noir, Thompson seedless, Ruby seedless and root stock 3309C, and Kober 5BB, from 10 locations in V, VI, VII, and metropolitan regions of Chile. P. chlamydospora was isolated from 82% of samples from vines 2 to 18 years old that showed decline symptoms in the field. Isolates were identified on the basis of a previous description (1) and internal transcribed spacer (ITS1-5.8S-ITS2) rDNA sequences identical to those of P. chlamydospora isolated from Vitis vinifera (culture CBS 22995, GenBank Accession No. AF 197973). P. chlamydospora is established as a member of the petri and esca disease complex and as a pathogen of grapevines (2,3). Pathogenicity tests were completed by injecting into the pith of 50 single-node, rooted cuttings of Pinot noir and 3309C, approximately 20 μl of a 106 conidia per ml suspension, obtained from four isolates from Chile and one from California. Ten control cuttings of Pinot noir and 3309C were injected with an equal volume of sterile distilled water. Twenty-four weeks after inoculations, all P. chlamydospora-inoculated cuttings exhibited dark streaking of the vascular tissue extending 40 to 45 mm from the point of inoculation. The vascular streaking observed in inoculated plants was identical to symptoms observed in declining vines in the vineyard. No symptoms were observed in the controls. P. chlamydospora was isolated from the region of vascular streaking in 85% of inoculated cuttings. P. chlamydospora was not isolated from the water-treated controls. The reisolated P. chlamydospora was verified with means of morphological characters and polymerase chain reaction amplification with the species-specific primers (3). P. chlamydospora is widespread and readily isolated from declining grapevines in Chile and other grape growing regions of the world. To our knowledge, this is the first report of P. chlamydospora from the cultivars cited above in Chile. References: (1) M. Groenewald et al. Mycol. Res. 105:651, 2001. (2) L. sparapano et al. Phytopathol. Mediterr. (Suppl.)40:376, 2001. (3) S. Tegli et al. Phytopathol. Mediterr. 39:134, 2000.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Sign in / Sign up

Export Citation Format

Share Document