scholarly journals Occurrence of Blight Caused by Sclerotium rolfsii on Lolium perenne in Argentina

Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 910-910
Author(s):  
L. Goldring ◽  
M. Lacasa ◽  
E. R. Wright ◽  
B. A. Pérez ◽  
M. C. Rivera

A perennial ryegrass (Lolium perenne L.) lawn located at Castelar (Buenos Aires Province) showed disease symptoms during the summer of 2003. Chlorotic patches as much as 15 cm in diameter appeared on the lawn. Later, dead plants with white mycelia developing on the crown and surrounding soil occurred at the periphery of the rings. Plants showed leaf chlorosis and crown and root rot. No sclerotia developed on plant organs. Diseased plants were collected, washed with running tap water for 4 h, and disinfested in 5% NaOCl for 2 min. Pieces, 3 to 5 mm long from symptomatic leaves, crowns, and roots, were incubated on 2% potato dextrose agar (PDA) at 22 to 25°C with a 12-h light/dark cycle. Mycelia growing on the soil surface was transferred to PDA and incubated under the same conditions. After 3 to 4 days, white, conspicuous mycelia that produced sclerotia grew from diseased tissue pieces and soil mycelial samples. Sclerotia were nearly spherical, 1 to 2 mm in diameter, white but turning brown with age, and produced in large numbers over the entire colony surface. Primary hyphae showed clamp connections at the septa. A pathogenicity test was performed with 20 1-month-old plants of L. perenne grown in a 1:1 (v/v) mixture of sand and soil contained in 24- × 17- × 4-cm plastic trays. Seven-day-old fungal cultures grown on PDA were cut into 1- cm2 pieces and placed among the plants on the substrate. Each tray was inoculated with seven inoculum pieces. Five trays of plants were inoculated with the fungus, and plants in five trays that served as controls had only sterile pieces of PDA placed on the substrate. All plants were maintained at 25°C and watered frequently. First symptoms, consisting of chlorosis, were observed 4 days after inoculation. Of the plants, 34, 59, 60, 65, and 70% developed symptoms 6, 9, 14, 17, and 21 days after inoculation, respectively. Control plants remained healthy. The fungus was reisolated from diseased plants and identified as Sclerotium rolfsii Sacc. (teleomorph Athelia rolfsii (Curzi) C.C. Tu & Kimbr.) on the basis of morphological and cultural characteristics (3,4). The disease has been observed causing stalk rot on perennial ryegrass in the United States (1) and Australia (2). To our knowledge, this is the first report of S. rolfsii causing disease on L. perenne in Argentina. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society. St. Paul, MN. 1989. (2) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. ARS, USDA, 2007. (3) J. E. M. Mordue. No. 410 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, UK, 1974. (4) Z. K. Punja and A. Damiani. Mycologia 88:694, 1996.

Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 524-524 ◽  
Author(s):  
S. A. Gaetán ◽  
L. Fernandez ◽  
M. Madia

Canola (Brassica napus) is an important oleaginous crop in Argentina. Approximately 16,000 ha are grown commercially in the southern region of Buenos Aires Province. In 2003, typical symptoms and signs of charcoal rot were observed on canola plants in experimental plots located at the School of Agricultural Sciences, University of Buenos Aires in Buenos Aires. Average disease incidence across three 5- to 6-month-old plants (cvs. Monty, Rivette, and Trooper) was 12% (range = 7 to 17%). Affected plants appeared in patches following the rows at pod-filling stage. Symptoms included wilted foliage, premature senescence, and death of plants. Black, spherical microsclerotia 78 to 95 μm in diameter were present in vascular tissue of basal stems and taproots. The affected plants were stunted and had unfilled pods. In advanced phases of the disease, areas of silver gray-to-black discoloration were observed in the stem cortex; many plants were killed during late-grain fill, and plants could be pulled easily from the ground because basal stems were shredded. Four samples consisting of five symptomatic plants per sample were randomly collected from experimental plots. Pieces (1-cm long) taken from taproots and basal stems of diseased plants were surface sterilized with 1% NaOCl for 2 min and then placed on potato dextrose agar (PDA). Plates were incubated in the dark at 26°C for 4 days and then exposed to 12-h NUV light/12-h dark for 6 days. Five resulting isolates were identified as Macrophomina phaseolina (Tassi) Goidanich (1) based on the gray color of the colony and the presence of microsclerotia 71 to 94 μm in diameter. Two colonies developed globose pycnidia with one-celled, hyaline, and elliptic conidia. Pathogenicity tests were conducted using four inoculated and three non-inoculated control plants potted in a sterilized soil mix (soil/sand, 3:1) in a greenhouse at 25°C and 75% relative humidity with no supplemental light. Crown inoculations were carried out by placing a disk taken from an actively growing culture of M. phaseolina into wounds made with a sterile scalpel. Control plants received disks of sterile PDA. Inoculated and control plants were covered with polyethylene bags for 48 h after inoculation. Three isolates caused disease on 7-week-old canola plants (cvs. Master, Mistral, Rivette, and Trooper). Characteristic symptoms similar to the original observations developed for all three isolates within 21 days after inoculation on 80% of inoculated plants. The pathogen was successfully reisolated from diseased stem tissue in all instances. Symptoms included leaf necrosis, stunting, decay and collapse of seedlings, and plant death. Control plants remained asymptomatic. The experiment was repeated once with similar results. To our knowledge, this is the first report of the occurrence of M. phaseolina causing charcoal rot on canola in Argentina. This pathogen has been previously reported in the United States (2,3). The results demonstrate the potential importance of this pathogen in Argentina, since two commercial cultivars (Master and Mistral) were apparently susceptible to M. phaseolina. More studies are needed to determine the presence of charcoal rot in canola-growing areas of Argentina. References: (1) Anonymous. Macrophomina phaseolina. No. 275 in: Descriptions of Plant Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1970. (2) R. E. Baird et al. Plant Dis. 78:316, 1994. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1270-1270 ◽  
Author(s):  
P. R. Giordano ◽  
Q. Zeng ◽  
N. M. Dykema ◽  
A. R. Detweiler ◽  
J. M. Vargas

Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1048-1048
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Jerusalem cherry (Solanum pseudocapsicum) has recently become popular as a potted ornamental plant in Italy. During the summer of 1999, a sudden wilt of 60-day-old plants was observed in the Albenga region (Northern Italy), an area of intensive floriculture. Initial symptoms included stem necrosis at the soil line and yellowing and tan discoloration of leaves. As stem necrosis progressed, infected plants wilted and died. Necrotic tissues were covered with whitish mycelium that differentiated into reddish brown, spherical (1 to 2 mm diameter) sclerotia. Sclerotium rolfsii was consistently recovered from the surface of symptomatic stem sections that were disinfected for 1 min in 1% NaOCl and then plated on potato-dextrose agar (PDA) amended with 100 ppm streptomycin sulfate. Pathogenicity of three S. rolfsii isolates was confirmed by inoculating 90-day-old S. pseudocapsicum plants grown in pots. Inoculum consisted of mycelium and sclerotia of the pathogen placed on the soil surface around the base of each plant. Noninoculated plants served as controls. All plants were kept in a growth chamber at 18 to 28°C and RH > 85%. Inoculated plants developed symptoms within 7 days, while control plants remained symptomless. Sclerotia developed on infected tissues and S. rolfsii was reisolated from symptomatic tissues. The disease has been observed in the United States (1), but this is the first report of stem blight of S. pseudocapsicum caused by S. rolfsii in Europe. Reference: (1) S. A. Alfieri, Jr., K. R. Langdon, C. Wehlburg, and J. W. Kimbrough, J. W. Index Plant Dis. Florida Bull. 11:215, 1984.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1005-1005 ◽  
Author(s):  
A. Koehler ◽  
H. Shew

Stevia (Stevia rebaundia) is an emerging crop in the United States. Once established, the crop is grown for 3 to 5 years and is typically harvested twice per growing season. Stevia leaves contain multiple glycosides that are used as a natural noncaloric sweetener that was approved by the USDA in 2008 as a sugar substitute. In commercial plantings of Stevia in North Carolina, wilting and death of plants in first- and second-year plantings were observed in 2012 and 2013. Diseased plants were observed in multiple counties in the state, with first symptoms observed in May of each year and continuing through the summer months. Prior to Stevia, these fields had been planted primarily in a corn-soybean rotation. Symptoms began as moderate to severe wilting of young shoots and chlorosis of leaves, rapidly followed by death of stems and rotting of roots. White mycelial growth was frequently observed at the base of stem tissue. Theses characteristic hyphae of Sclerotium rolfsii were often accompanied by the presence of abundant white to brown sclerotia. Isolations from infected root and stem tissue were made on potato dextrose agar amended with 50 μg/ml of streptomycin sulfate and penicillin G. Isolations from diseased tissue yielded characteristic white hyphae of S. rolfsii (1,3). Numerous sclerotia 0.5 to 2 mm in diameter developed following 4 to 7 days of mycelial growth. Sclerotia were initially white and melanized turning brown with age. To verify pathogenicity, 10-week-old Stevia seedlings were transplanted in 10-cm diameter pots containing sterile 1:1:1 sand, loam, media mix. Inoculum consisted of oat grains infested with one isolate obtained from the field plants. Oats were sterilized on three consecutive days and then inoculated with colonized agar plugs of S. rolfsii. Oats were incubated at room temperature to allow the fungus to thoroughly colonize the oats. Three infested oat grains were added to each test pot and plants were then observed over a 3-week period. Symptoms were observed within 5 days on most plants and included chlorotic leaves, bleached stems, wilting, and necrotic roots. White mycelium and abundant sclerotia were found at the base of plants. Uninoculated plants did not develop any symptoms. This is the first report of S. rolfsii on Stevia in the United States. Kamalakannan et al. (2) reported a root rot disease of Stevia in India and confirmed S. rolfsii as the causal agent. References: (1) R. Aycock. N.C. Agr. Exp. St. Tech. Bull. No. 174, 1966. (2) A. Kamalakannan et al. Plant Pathol. 56:350, 2007. (3) J. E. M. Mordue. Corticium rolfsii. CMI Descriptions of Pathogenic Fungi and Bacteria No. 410. CAB International, Wallingford, UK, 1974.


2002 ◽  
Vol 92 (3) ◽  
pp. 245-254 ◽  
Author(s):  
Mark L. Farman

Gray leaf spot of perennial ryegrass (prg) (Lolium perenne), caused by the fungus Pyricularia grisea (teleomorph = Magnaporthe grisea), has rapidly become the most destructive of all turf grass diseases in the United States. Fungal isolates from infected prg were analyzed with several molecular markers to investigate their relationship to P. grisea strains found on other hosts. All of the molecular markers used in this study revealed that isolates from prg are very distantly related to those found on crabgrass. Fingerprinting with MGR586 (Pot3) revealed zero to three copies of this transposon in the prg pathogens, distinguishing them from isolates pathogenic to rice, which typically have more than 50 copies of this element. RETRO5, a newly identified retroelement in P. grisea, was present at a copy number of >50 in isolates from rice and Setaria spp. but only six to eight copies were found in the isolates from prg. The MAGGY retrotransposon was unevenly distributed in the prg pathogens, with some isolates lacking this element, some possessing six to eight copies, and others having 10 to 30 copies. These results indicated that the P. grisea isolates causing gray leaf spot are distinct from those found on crabgrass, rice, or Setaria spp. This conclusion was supported by an unweighted pair-group method with arithmetic average cluster analysis of single-copy restriction fragment length polymorphism haplo-types. Fingerprints obtained with probes from the Pot2 and MGR583 transposons revealed that the prg pathogens are very closely related to isolates from tall fescue, and that they share similarity with isolates from wheat. However, the wheat pathogens had fewer copies of these elements than those found on prg. Therefore, I conclude that P. grisea isolates commonly found on other host plant species did not cause gray leaf spot epidemics on prg. Instead, the disease appears to be caused by a P. grisea population that is specific to prg and tall fescue.


Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 696-696 ◽  
Author(s):  
A. P. Keinath ◽  
J. W. Rushing ◽  
R. J. Dufault

Interest in commercial production of common St.-John's-wort (Hypericum perforatum L.), an herb that is dried, processed, and used as an anti-depressant medication, is increasing. In August 1998, St.-John's-wort growing in the field at Charleston, SC, showed blight symptoms. Leaves on prostrate branches turned reddish-yellow, then brown, and then abscised. As the disease progressed, branches and approximately 10% of the plants were killed. Coarse, white mycelia were present on the bases of dead branches. Segments cut from symptomatic branches were disinfested in 0.5% sodium hypochlorite and placed on potato dextrose agar (PDA) at 25°C. Sclerotium rolfsii Sacc. was isolated from one of 12 branches with discolored leaves and six of six dead branches. For pathogenicity tests, sclerotia were harvested from 6-week-old cultures on PDA. Ten-week-old St.-John's-wort plants, growing in potting mix in 10-cm pots, were inoculated by placing four sclerotia on the soil surface 1 to 1.5 cm from the main stem of each plant. Plants were grown in a greenhouse at 90% relative humidity and 25 to 35°C. Single blighted branches were observed on three plants 12 days after inoculation and all plants were blighted 28 days after inoculation. S. rolfsii was recovered from 10 and 9 of 10 plants inoculated with isolates of S. rolfsii from St.-John's-wort and tomato, respectively. All 10 noninoculated plants remained symptomless. The pathogenicity test was repeated and the results were similar. This is the first report of S. rolfsii causing Southern blight on St.-John's-wort in the United States.


Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 517-524 ◽  
Author(s):  
Y. Tosa ◽  
W. Uddin ◽  
G. Viji ◽  
S. Kang ◽  
S. Mayama

Gray leaf spot caused by Magnaporthe oryzae is a serious disease of perennial ryegrass (Lolium perenne) turf in golf course fairways in the United States and Japan. Genetic relationships among M. oryzae isolates from perennial ryegrass (prg) isolates within and between the two countries were examined using the repetitive DNA elements MGR586, Pot2, and MAGGY as DNA fingerprinting probes. In all, 82 isolates of M. oryzae, including 57 prg isolates from the United States collected from 1995 to 2001, 1 annual ryegrass (Lolium multiflorum) isolate from the United States collected in 1972, and 24 prg isolates from Japan collected from 1996 to 1999 were analyzed in this study. Hybridization with the MGR586 probe resulted in approximately 30 DNA fragments in 75 isolates (designated major MGR586 group) and less than 15 fragments in the remaining 7 isolates (designated minor MGR586 group). Both groups were represented among the 24 isolates from Japan. All isolates from the United States, with the exception of one isolate from Maryland, belonged to the major MGR586 group. Some isolates from Japan exhibited MGR586 fingerprints that were identical to several isolates collected in Pennsylvania. Similarly, fingerprinting analysis with the Pot2 probe also indicated the presence of two distinct groups: isolates in the major MGR586 group showed fingerprinting profiles comprising 20 to 25 bands, whereas the isolates in the minor MGR586 group had less than 10 fragments. When MAGGY was used as a probe, two distinct fingerprint types, one exhibiting more than 30 hybridizing bands (type I) and the other with only 2 to 4 bands (type II), were identified. Although isolates of both types were present in the major MGR586 group, only the type II isolates were identified in the minor MGR586 group. The parsimony tree obtained from combined MGR586 and Pot2 data showed that 71 of the 82 isolates belonged to a single lineage, 5 isolates formed four different lineages, and the remaining 6 (from Japan) formed a separate lineage. This study indicates that the predominant groups of M. oryzae associated with the recent outbreaks of gray leaf spot in Japan and the United States belong to the same genetic lineage.


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2002 ◽  
Vol 86 (1) ◽  
pp. 71-71
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

The production of potted ornamental plants is very important in the Albenga Region of northern Italy, where plants are grown for export to central and northern Europe. During fall 2000 and spring 2001, sudden wilt of tussock bellflower (Campanula carpatica Jacq.) and butterfly flower (Schizanthus × wisetonensis Hort.) was observed on potted plants in a commercial greenhouse. Initial symptoms included stem necrosis at the soil line and yellowing and tan discoloration of the lower leaves. As stem necrosis progressed, infected plants growing in a peat, bark compost, and clay mixture (70-20-10) wilted and died. Necrotic tissues were covered with whitish mycelia that produced dark, spherical (2 to 6 mm diameter) sclerotia. Sclerotinia sclerotiorum was consistently recovered from symptomatic stem pieces of both plants disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with streptomycin sulphate at 100 ppm. Pathogenicity of three isolates obtained from each crop was confirmed by inoculating 45- to 60-day-old C. carpatica and Schizanthus × wisetonensis plants grown in containers (14 cm diameter). Inoculum that consisted of wheat kernels infested with mycelia and sclerotia of each isolate was placed on the soil surface around the base of previously artificially wounded or nonwounded plants. Noninoculated plants served as controls. All plants were maintained outdoors where temperatures ranged between 8 and 15°C. Inoculated plants developed symptoms of leaf yellowing, followed by wilt, within 7 to 10 days, while control plants remained symptomless. White mycelia and sclerotia developed on infected tissues and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of stem blight of C. carpatica and Schizanthus × wisetonensis caused by S. sclerotiorum in Italy. The disease was previously observed on C. carpatica in Great Britain (2) and on Schizanthus sp. in the United States (1). References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) J. Rees. Welsh J. Agric. 1:188, 1925.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 528-528 ◽  
Author(s):  
C. J. Maroon-Lango ◽  
J. Hammond ◽  
S. Warnke ◽  
R. Li ◽  
R. Mock

Initial reports of the presence of Lolium latent virus (LLV) in Lolium perenne L. and L. multiflorum Lam. breeding clones in Germany, the Netherlands, France (2), and recently the United Kingdom (3,4; described as Ryegrass latent virus prior to identification as LLV) prompted us to evaluate clonally propagated Lolium plants from the United States. Four genetically distinct plants (viz., MF22, MF48, MF125, and MF132) that have been maintained clonally for 5 years from a Lolium perenne × L. multiflorum hybrid population established in the United States exhibited either no symptoms or mild chlorotic flecking that coalesced to form chlorotic to necrotic streaking on the leaves. All four clonal plants tested positive using reverse transcription-polymerase chain reaction (RT-PCR) with the Potexvirus group PCR test (Agdia, Inc., Elkhart, IN), whereas all clones but MF48 tested positive using the Potyvirus group PCR test (Agdia, Inc.). No amplicons were obtained when the same plants were tested for tobamovirus, carlavirus, and closterovirus using appropriate virus group-specific primers. Cloning and sequencing of the potexviral amplicons revealed very high sequence identity with the comparable region of LLV-UK (GenBank Accession No. DQ333886), whereas those of the potyviral amplicons (GenBank Accession Nos. DQ355837 and DQ355838) were nearly identical with the comparable region of Ryegrass mosaic virus (RGMV), a rymovirus first reported from the United States in 1957 (1). Using indirect enzyme-linked immunosorbent assay (ELISA), extracts from all four Lolium clonal propagations tested positive for LLV using the antiserum raised to LLV-Germany (courtesy of Dr. Huth), whereas the potyvirus-positive results from RT-PCR of the three clones were confirmed using indirect ELISA with the broad spectrum potyvirus monoclonal antibody, PTY-1. LLV from singly or dually infected Lolium clones was transmitted to Nicotiana benthamiana Domin. but not to N. tabacum L. by mechanical inoculation. LLV was purified from infected N. benthamiana. Similar sized flexuous rods were observed using electron microscopy in leaf dip samples from Lolium clones and aliquots of the virions purified from N. benthamiana. References: (1) G. W. Bruehl et al. Phytopathology 47:517, 1957. (2) W. Huth et al. Agronomie 15:508, 1995. (3) R. Li et al. Asian Conf. Plant Pathol. 2:89, 2005. (4) C. Maroon-Lango et al. Int. Congr. Virol. 13:63, 2005.


Sign in / Sign up

Export Citation Format

Share Document