scholarly journals Characterization of a New Streptomyces Strain, DS3024, That Causes Potato Common Scab

Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1329-1334 ◽  
Author(s):  
J. J. Hao ◽  
Q. X. Meng ◽  
J. F. Yin ◽  
W. W. Kirk

A novel strain of Streptomyces (named DS3024) was isolated from a potato field in Michigan in 2006. The taxonomy of the organism was determined by morphology, biochemistry, and genetic analysis. Analysis of the 16S ribosomal RNA gene sequence indicated that the organism was most similar to an isolate of Streptomyces sp., ME02-6979.3a, which is not pathogenic to potato tubers but is distinct from other known pathogenic Streptomyces spp. Strain DS3024 has genes that encode thaxtomin synthetase (txtAB), which is required for pathogenicity and virulence, and tomatinase (tomA), which is a common marker for many pathogenic Streptomyces spp. However, the nec1 gene (associated with virulence in most pathogenic Streptomyces spp.) was not detected. The new strain was capable of growth at pH 4.5, caused necrosis on potato tuber slices, and produced thaxtomin A. In greenhouse experiments, DS3024 caused scab symptoms on potato tubers similar to those caused by Streptomyces scabies on tubers of potato cv. Atlantic, which is scab susceptible. We propose that DS3024 is a new strain of Streptomyces capable of causing common scab on potato tubers. The prevalence of this strain of Streptomyces in potato-producing areas in the north-central United States has not been determined.

2016 ◽  
Vol 106 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Joanna K. Fyans ◽  
Luke Bown ◽  
Dawn R. D. Bignell

Potato common scab (CS) is an economically important crop disease that is caused by several members of the genus Streptomyces. In this study, we characterized the plant-pathogenic Streptomyces spp. associated with CS-infected potato tubers harvested in Newfoundland, Canada. A total of 17 pathogenic Streptomyces isolates were recovered from potato scab lesions, of which eight were determined to be most similar to the known CS pathogen S. europaeiscabiei. All eight S. europaeiscabiei isolates were found to produce the thaxtomin A phytotoxin and to harbor the nec1 virulence gene, and most also carry the putative virulence gene tomA. The remaining isolates appear to be novel pathogenic species that do not produce thaxtomin A, and only two of these isolates were determined to harbor the nec1 or tomA genes. Of the non-thaxtomin-producing isolates, strain 11-1-2 was shown to exhibit a severe pathogenic phenotype against different plant hosts and to produce a novel, secreted phytotoxic substance. This is the first report documenting the plant-pathogenic Streptomyces spp. associated with CS disease in Newfoundland. Furthermore, our findings provide further evidence that phytotoxins other than thaxtomin A may also contribute to the development of CS by Streptomyces spp.


1998 ◽  
Vol 44 (8) ◽  
pp. 768-776 ◽  
Author(s):  
Linda L Kinkel ◽  
John H Bowers ◽  
Kyoko Shimizu ◽  
Eric C Neeno-Eckwall ◽  
Janet L Schottel

Thaxtomin A production in culture, potato common scab severity (percentage of tuber surface infected or number of lesions per tuber), and fatty acid profiles were determined for 78 Streptomyces isolates. Only pathogenic Streptomyces spp. (n = 17) produced thaxtomin A in culture. Thaxtomin A production in culture (µg/mL) was significantly positively correlated with the percentage of tuber surface infected (R = 0.60; p = 0.017) but not with the number of lesions per tuber (R = 0.37; p = 0.17). An increase of 1 µg/mL in thaxtomin A production corresponded to an 11% increase in disease severity (percentage of tuber surface infected). The data indicate that quantitative information on the ability of a particular pathogen isolate or population to produce thaxtomin A may be critical to understanding and predicting the disease potential of that population. Using cluster analysis of fatty acid data, 94% of 67 unknown field isolates grouped with other field isolates having the same pathogenicity (plus or minus).Key words: thaxtomin A, phytotoxin, potato scab.


2006 ◽  
Vol 72 (3) ◽  
pp. 135-142 ◽  
Author(s):  
S. NAITO ◽  
M. MAEDA ◽  
S. TANI ◽  
D. IMAJI ◽  
S. AKINO ◽  
...  

2004 ◽  
Vol 50 (9) ◽  
pp. 705-709 ◽  
Author(s):  
Julie Beauséjour ◽  
Carole Beaulieu

Streptomyces scabies, a causal agent of common scab, produces both melanin and a secondary metabolite called thaxtomin A. To establish a possible relation between melanin and thaxtomin A production in S. scabies, we carried out N-methyl-N′-nitro-N-nitrosoguanidine (NTG) mutagenesis and isolated 11 melanin-negative mutants of S. scabies EF-35. These mutants were characterized for thaxtomin A production, pathogenicity, sporulation, and stress resistance. Nine of these mutants showed a significant reduction in thaxtomin A production when compared with the wild strain. However, only a few mutants exhibited a reduced level of virulence or a loss in their ability to induce common scab symptoms on potato tubers. Other pleiotrophic effects, such as higher sensitivity to heavy metals and incapacity to sporulate under certain stress conditions, were also associated with a deficiency in melanin production.Key words: common scab, potato, secondary metabolism, stress, thaxtomin.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 904-904 ◽  
Author(s):  
H. H. Jiang ◽  
Q. X. Meng ◽  
L. E. Hanson ◽  
J. J. Hao

Potato (Solanum tuberosum L.) common scab can be caused by multiple Streptomyces spp., with S. scabies as a predominant species (2,3). However, according to our survey in August 2007, many symptomatic potato tubers did not have S. scabies in Michigan. To identify the pathogen, potato tubers with scab symptoms were collected from two fields in Michigan, and Streptomyces spp. were isolated using Streptomyces selective medium (STR) (2). Pure cultures of the isolates were obtained by transferring single colonies and incubation at 28°C on STR. Three isolates, designated HER21, HER24, and HER26, were identified as Streptomyces stelliscabiei based on morphological and physiological characterization (1). Bacterial cultures were prepared in liquid yeast malt extract at 28°C on an incubator shaker at 150 rpm. Genomic DNA was extracted from the cultures and used as a template for PCR with species-specific primers for Streptomyces spp. (4). The isolates gave a positive PCR reaction with primers Stel3 and T2st2 for S. stelliscabiei, but negative for any other Streptomyces spp. reported as pathogenic to potato. The 16S rRNA genes were amplified using primers previously reported (4) and amplicons were sequenced and submitted to GenBank (Accession Nos. HM018115, HM018116, and HM018117 for the three isolates, respectively). BLAST analysis of these sequences against the NCBI GenBank database determined these sequences to have 99 to 100% sequence identity with S. stelliscabiei sequences such as Accession No. FJ546728 (4). These isolates were all confirmed by PCR, using the same conditions described above, to have txtAB, nec1, and tomA genes (4), which are associated with pathogenicity of scab-causing Streptomyces spp. To complete Koch's postulates, cell suspensions of the isolates were mixed in vermiculate media (3) at a final concentration of 106 colony-forming units/ml, which were used as inocula. Potato (cv Snowden) tubers were incubated in sterilized potting mix in a growth chamber at 25°C until the seed germinated. Each potato seedling was transferred to a new pot in the greenhouse. Two weeks later, the potting mix was infested with the bacterial spore suspensions of either HER21, HER24, or HER26, with five pots per isolate. Potting mix with only media or media with S. scabies isolate 49173 were used as negative and positive controls, respectively. Three months later, potato tubers were harvested and evaluated for scab symptoms (3). The experiment was done twice. Potato tubers inoculated with either S. stelliscabiei or S. scabies exhibited superficial, raised, or pitted scabby symptoms, and no symptoms were observed on tubers grown in noninfested potting mix. Disease index values from the combined trials averaged 0, 37.8, 26.5, 11.1, and 30.5% for negative control and isolates HER21, HER24, HER26, and 49173, respectively. The pathogen was reisolated from the lesions and confirmed identical to the original isolate by DNA sequences. To our knowledge, this is the first report of S. stelliscabiei causing potato common scab in Michigan (4). References: (1) K. Bouchek-Mechiche et al. Int. J. Syst. Evol. Microbiol. 50:91, 2000. (2) Conn et al. Plant Dis. 82:631, 1998. (3) Hao et al. Plant Dis. 93:1329, 2009. (4) L. A. Wanner. Am. J. Potato Res. 86:247, 2009.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cindy Hudec ◽  
Adrien Biessy ◽  
Amy Novinscak ◽  
Renée St-Onge ◽  
Simon Lamarre ◽  
...  

Common scab of potato causes important economic losses worldwide following the development of necrotic lesions on tubers. In this study, the genomes of 14 prevalent scab-causing Streptomyces spp. isolated from Prince Edward Island, one of the most important Canadian potato production areas, were sequenced and annotated. Their phylogenomic affiliation was determined, their pan-genome was characterized, and pathogenic determinants involved in their virulence, ranging from weak to aggressive, were compared. 13 out of 14 strains clustered with Streptomyces scabiei, while the last strain clustered with Streptomyces acidiscabies. The toxicogenic and colonization genomic regions were compared, and while some atypical gene organizations were observed, no clear correlation with virulence was observed. The production of the phytotoxin thaxtomin A was also quantified and again, contrary to previous reports in the literature, no clear correlation was found between the amount of thaxtomin A secreted, and the virulence observed. Although no significant differences were observed when comparing the presence/absence of the main virulence factors among the strains of S. scabiei, a distinct profile was observed for S. acidiscabies. Several mutations predicted to affect the functionality of some virulence factors were identified, including one in the bldA gene that correlates with the absence of thaxtomin A production despite the presence of the corresponding biosynthetic gene cluster in S. scabiei LBUM 1485. These novel findings obtained using a large number of scab-causing Streptomyces strains are challenging some assumptions made so far on Streptomyces’ virulence and suggest that other factors, yet to be characterized, are also key contributors.


Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1362-1372 ◽  
Author(s):  
M. I. Lapaz ◽  
J. C. Huguet-Tapia ◽  
M. I. Siri ◽  
E. Verdier ◽  
R. Loria ◽  
...  

Isolation and characterization of common scab (CS) pathogen Streptomyces spp. from Uruguayan potato tubers and soil samples were done in response to significant economic losses due to CS on potato in autumn 2010. Seventy of the 331 isolates were classified as pathogenic owing to their ability to induce necrosis on tuber disks and stunting of radish seedling. Streptomyces spp. causing CS on potato in Uruguay were found to represent a range of different species by virtue of their diverse morphological and physiological traits as well as rep-PCR, rpoB phylogenetic analysis, and multi-locus sequences analysis. We identified isolates primarily as Streptomyces scabiei, S. acidiscabies, and S. europaeiscabiei. However, some of the pathogenic isolates still remain to be identified at the species level. This highlights the need for improved methods for discrimination among pathogenic Streptomyces species. The presence of Streptomyces pathogenicity island (PAI) genes was analyzed, including genes encoding for thaxtomin synthetase (txtA, txtB), tomatinase (tomA), and a necrosis protein (nec1). Among the isolates that were pathogenic, 50% contained the four pathogenicity genes, 33% had an atypical composition of PAI marker genes, and 17% did not contain any genes. The absence of the genes reported to be involved in thaxtomin biosynthesis (txtA, txtB) was confirmed by whole-genome sequencing of two representative strains of this group. This finding suggests the participation of other virulence factors in plant pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document