scholarly journals First Report of Penicillium glabrum Causing Fruit Rot of Pomegranate (Punica granatum) in Greece

Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1347-1347 ◽  
Author(s):  
G. A. Bardas ◽  
G. D. Tzelepis ◽  
L. Lotos ◽  
G. S. Karaoglanidis

During September and October of 2008 in the region of Larisa (central Greece), postharvest fruit rot was observed on pomegranate (cv. Kapmaditika), which is rapidly increasing in production in Greece, causing losses of 10 to 20% after 2 months of cold storage (5 to 6°C). Infected fruits showed green conidiophores in the calyx area, while internal symptoms consisted of soft, brown tissue that became covered with green mycelium and conidiophores. To isolate the casual agent, conidia and conidiophores were scraped aseptically from the internal fruit rot, suspended in sterile water, and streaked onto potato dextrose agar (PDA). Single hyphal tips were then transferred to new PDA plates. A fungus consistently isolated from the infected tissues was identified as Penicillium glabrum (Wehmer) Westling on the basis of morphological criteria, with conidiophores smooth or finely roughened and conidia in compact columns, glubose to subglubose, approximately 3.0 μm, with walls somewhat echinulate (1). The identification was confirmed by sequencing the internal transcribed spacer (ITS) region spanning ITS1, 5.8S, and ITS2 of the ribosomal DNA (2). The nucleotide sequence was submitted to GenBank (Accession No. FN313540). The pathogenicity of the isolated fungus was tested on five mature pomegranate fruit (cv. Kampaditika) after being surface sterilized with 5% sodium hypochlorite. A plug (5 mm in diameter) obtained from the margins of a P. glabrum colony was transferred to wounds (3 × 3 mm) made with a scalpel in the surface of fruit. Fruit inoculated with sterile PDA plugs served as controls. Fruit were incubated at 22°C and 80% relative humidity in the dark. Extensive decay, similar to that observed on diseased fruit in the field, was observed on the inoculated fruit 7 days after inoculation, whereas control fruit showed no decay. The pathogen was reisolated from inoculated fruit but not from the noninoculated fruit. To our knowledge, this is the first report of P. glabrum causing postharvest fruit rot of pomegranates in Greece. References: (1) C. Thom and K. B. Raper. Page 176 in: A Manual of the Penicillia. Williams and Wilkins, Baltimore, 1949. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1190-1190 ◽  
Author(s):  
M. Luo ◽  
Z. Y. Dong ◽  
S. Y. Bin ◽  
J. T. Lin

Pomelo (Citrus grandis) is widely cultivated in MeiZhou Guangdong Province of China. In 2008, a disease on pomelo fruit caused significant economic losses by affecting fruit quality. Diseased fruit was collected in December 2008 from MeiZhou Guangdong, surface sterilized in 75% ethanol for 1 min and internal necrotic tissue was transferred to potato dextrose agar (PDA) and incubated at 28°C for 5 days. Three single-spore isolates were obtained from different fruit and identified as Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (synonyms Diplodia natalensis Pole-Evans and Botryodiplodia theobromae Pat.; teleomorph Botryosphaeria rhodina (Cooke) Arx) on the basis of morphological and physiological features. The fungus produced dark brown colonies (initially grayish) on PDA. Young hyphae were hyaline and aseptate, whereas mature hyphae were septate with irregular branches. Cultures of L. theobromae produced globular or irregular pycnidia abundantly on PDA (pH 3.5) at 28°C after 1 month. Mature conidia of L. theobromae were 20 to 26 × 12 to 15.5 μm, subovoid to ellipsoid-ovoid, initially hyaline and nonseptate, remaining hyaline for a long time, and finally becoming dark brown and one septate with melanin deposits on the inner surface of the wall arranged longitudinally giving a striate appearance to the conidia. The internal transcribed spacer (ITS) region of the rDNA was amplified from gDNA using primers ITS1 (5′-TCCGATGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) (1). Amplicons were 542 bp long (GenBank Accession No. JF693024) and had 100% nucleotide identity with the corresponding sequence (GenBank Accession No. EU860391) of L. theobromae isolated from a Pinus sp. (2). To satisfy Koch's postulates, six asymptomatic fruit on potted plants were sprayed until runoff with a spore suspension (1 × 106 spores/ml) prepared from 30-day-old cultures of one isolate. Control fruit received water. Plants were covered with sterile wet gauze to maintain high humidity. Fruit spot symptoms similar to those on diseased field fruit appeared after 15 days on all inoculated fruits. L. theobromae was reisolated from all inoculated test fruit. No symptoms were observed on the fruit of control plants. To our knowledge, this is the first report of L. theobromae causing disease on pomelo fruit in China. This pathogen has also been previously reported to be economically important on a number of other hosts by mostly affecting the leaves. References: (1) J. C. Batzer et al. Mycologia 97:1268, 2005. (2) C. A. Pérez et al. Fungal Divers. 41:53,2010.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 556-556 ◽  
Author(s):  
L. F. Roca ◽  
M. C. Raya ◽  
A. Trapero

Species in the Botryosphaeriaceae are known to produce cankers, dieback, blights, and leaf spots on many hosts, mainly under stress conditions. Several Botryosphaeria spp. may also cause pre- or post-harvest decay of stone fruit, such as peaches (2). In June 2012, fruit of plum (Prunus domestica cv. Golden Japan) showing soft, brown, and slightly sunken necrotic lesions were observed in several orchards affected by hail in Cordoba province (southern Spain). Symptomatic fruit were collected and incubated at 25°C and 100% relative humidity. Isolations were done on potato dextrose agar (PDA). Mycelium and black pycnidia developed on the surface of incubated fruit and on PDA plates. Conidia were hyaline, aseptate, and fusoid. According to morphological criteria, the fungus was identified as Fusicoccum aesculi, the anamorph of Botryosphaeria dothidea (3). The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS4/ITS5 and sequenced. BLAST analysis of the 528-bp fragment showed 100% homology with the sequence of B. dothidea. Pathogenicity tests were performed on immature healthy fruit (2 weeks before harvest) of the same cultivar from the same orchards. Fruit were washed in deionized water with Tween 20 (Polyoxyethylene 20 sorbitan monolaureate 99%, 0.1 ml/liter) and surface sterilized in 10% sodium hypochlorite for 1 min. Twenty-four fruit were inoculated using mycelial-agar discs. Twelve fruit were previously wounded with a sterile 0.5-mm-diameter needle. The same number of fruit, wounded and unwounded, served as a control. All fruit were incubated at 25°C and 100% relative humidity. Seven days after inoculation, 83% of wounded inoculated fruit showed rot symptoms. After 9 days, fruit rot symptoms started to appear on unwounded inoculated fruit. Twenty days after inoculation, 100% of wounded and unwounded fruit showed rot symptoms that led to mummification of the fruit. Pycnidia developed on inoculated fruit and the fungus was reisolated. No symptoms developed on control fruit. These results demonstrate that B. dothidea is pathogenic on plum and that wounds favor infection, although they are not needed. To our knowledge this is the first report of B. dothidea causing fruit rot of plum in Spain. This pathogen is well known in southern Spain causing a serious fruit rot of olive (1) and could have a great impact on plum production in this region, especially when there is damage to the fruits as occurred this year with hail. References: (1) J. Moral et al. Phytopathology 100:1340, 2010. (2) J. M. Ogawa et al. Compendium of Stone Fruit Diseases. APS Press, St. Paul, MN, 1995. (3) B. Slippers et al. Mycologia 96:83, 2004.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 461-461 ◽  
Author(s):  
M. Mirabolfathy ◽  
J. Z. Groenewald ◽  
P. W. Crous

Iran is the largest producer of pomegranate (Punica granatum) in the world, with more than 60,000 ha currently in production. In the spring of 2011, a decline and dieback of young pomegranate trees (7 to 10 years old) were observed in the Kheir area of Fars Province. Dieback and twig blight developed toward the lower part of the stem, resulting in death of aerial tree parts and growing suckers from roots. Surface-disinfected tissues of diseased plants were plated on potato dextrose agar (PDA) and malt extract agar media. Isolates were separated into two groups that had either pale green or white aerial mycelia and sporulated after 5 to 7 days at 25°C. Pycnidia were globose and black with thin, membranous, pseudoparenchymatic walls, 80 to 140 μm in diameter. Conidia were hyaline, one-celled, elongate to fusiform, straight, and 11 to 17 × 4 to 6 μm (average 14 × 4.7 μm). Cardinal minimum growth temperatures were 8 to 10°C, optimum at 27 to 30°C, and maximum at 35°C. Radial growth rate at 30°C was 8 to 9 mm per day. Representative isolates were deposited in the CBS-KNAW Fungal Biodiversity Centre, the Netherlands (CPC 19625 = CBS 130974 and CPC 19626 = CBS 130975; GenBank JN815312 and JN815313, respectively). Genomic DNA was extracted with the UltraClean Microbial DNA Isolation Kit (MoBio Laboratories, Inc., Solana Beach, CA) and the internal transcribed spacer (ITS) region of the nrDNA operon of two isolates were sequenced as described previously (1). On the basis of morphology (3), the causal organism was identified as Pilidiella granati Sacc. This identification was corroborated by the ITS sequence data, which was identical for both colony types to GenBank HQ166057 (identities = 614 of 614 [100%]). Pathogenicity tests were conducted using two representative isolates from each group on 5-month-old P. granatum trees with 10 replicates under greenhouse conditions; 5-mm mycelial plugs from the edge of 7-day-old colonies on PDA were placed under the bark of twig wounds. Uncolonized PDA plugs were used as noninoculated controls. Pathogenicity was also tested on nonwounded fruit by placing colonized 5-mm-diameter mycelial plugs on surface-disinfected pomegranate fruits; noncolonized PDA plugs were used as controls. All treated fruit were placed in plastic bags and maintained at 25°C for 10 days. Isolates were found to be pathogenic on twigs after 2 months, giving rise to brown lesions that were 2 to 5 cm long. No lesions were observed on the controls. Furthermore, the fungus was reisolated from all infected tissues, satisfying Koch's postulates. On pomegranate fruit, the fungus colonized the fruit after 5 to 8 days, followed by the appearance of fruit rot symptoms leading to the formation of abundant pycnidia covering the skin after 10 days. No decay was observed in control inoculations. Pilidiella granati has previously been reported as a pathogen of P. granatum fruit from Europe, Asia, and the United States (2). To our knowledge, this is the first report of this pathogen causing dieback and fruit rot of pomegranate in Iran. References: (1) J. Frank et al. Persoonia 24:93, 2010. (2) L. Palou et al. Online publication. doi:10.5197/j.2044.0588.2010.022.021. New Dis. Rep. 22:21, 2010. (3) J. M. Van Niekerk et al. Mycol. Res. 108:283, 2004.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1160-1160
Author(s):  
F. Flores ◽  
N. R. Walker

Sandbur (Cenchrus incertus Curtis) is a warm-season, annual, noxious, grassy weed native to southern North America. It is common in sandy, disturbed soils and can also be found in home lawns and sport fields where low turf density facilitates its establishment. In July 2013, after a period of frequent rainfall and heavy dew, symptoms of dollar spot-like lesions (1) were observed on sandbur plants growing in a mixed stand of turf-type and native warm-season grasses in Logan County, Oklahoma. Lesions, frequently associated with leaf sheaths, were tan and surrounded by a dark margin. Symptomatic leaves were surface sterilized and plated on potato dextrose agar amended with 10 ppm rifampicin, 250 ppm ampicillin, and 5 ppm fenpropathrin. After incubation, a fungus morphologically identical to Sclerotinia homoeocarpa Bennett was consistently isolated. The nuclear ribosomal internal transcribed spacer (ITS) region of two different isolates, SCL2 and SCL3, were amplified using primers ITS4 and ITS5 (2). The DNA products were sequenced and BLAST analyses were used to compare sequences with those in GenBank. The sequence for isolate SLC2 was 869 bp, contained a type I intron in the 18S small subunit rDNA, and was identical to accession EU123803. The ITS sequence for isolate SLC3 was 535 bp and identical to accession EU123802. Twenty-five-day-old seedlings of C. incertus were inoculated by placing 5-mm-diameter agar plugs, colonized by mycelia of each S. homoeocarpa isolate, onto two of the plants' leaves. Plugs were held in place with Parafilm. Two plants were inoculated with each isolate and sterile agar plugs were placed on two leaves of another seedling as control. Plants were incubated in a dew chamber at 20°C and a 12-h photoperiod. After 3 days of incubation, water-soaked lesions surrounded by a dark margin appeared on inoculated plants only. Fungi that were later identified as S. homoeocarpa isolates SLC2 and SLC3 by sequencing of the ITS region were re-isolated from symptomatic leaves, fulfilling Koch's postulates. To our knowledge, this is the first report of dollar spot on sandbur. References: (1) R. W. Smiley et al. Page 22 in: Compendium of Turfgrass Diseases. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2005. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1271-1271 ◽  
Author(s):  
F. Baysal-Gurel ◽  
N. Subedi ◽  
D. P. Mamiro ◽  
S. A. Miller

Dry bulb onion (Allium cepa L. cvs. Pulsar, Bradley, and Livingston) plants with symptoms of anthracnose were observed in three commercial fields totaling 76.5 ha in Huron Co., Ohio, in July 2013. Symptoms were oval leaf lesions and yellowing, curling, twisting, chlorosis, and death of leaves. Nearly half of the plants in a 32.8-ha field of the cv. Pulsar were symptomatic. Concentric rings of acervuli with salmon-colored conidial masses were observed in the lesions. Conidia were straight with tapered ends and 16 to 23 × 3 to 6 μm (2). Colletotrichum coccodes (Wallr.) S. Hughes was regularly isolated from infected plants (2). Culturing diseased leaf tissue on potato dextrose agar (PDA) amended with 30 ppm rifampicin and 100 ppm ampicillin at room temperature yielded white aerial mycelia and salmon-colored conidial masses in acervuli. Numerous spherical, black microsclerotia were produced on the surface of colonies after 10 to 14 days. To confirm pathogen identity, total DNA was extracted directly from a 7-day-old culture of isolate SAM30-13 grown on PDA, using the Wizard SV Genomic DNA Purification System (Promega, Madison, WI) following the manufacturer's instructions. The ribosomal DNA internal transcribed spacer (ITS) region was amplified by PCR using the primer pair ITS1 and ITS4 (2), and sequenced. The sequence, deposited in GenBank (KF894404), was 99% identical to that of a C. coccodes isolate from Michigan (JQ682644) (1). Ten onion seedlings cv. Ebenezer White at the two- to three-leaf stage of growth were spray-inoculated with a conidial suspension (1 × 105 conidia/ml containing 0.01% Tween 20, with 10 ml applied/plant). Plants were maintained in a greenhouse (21 to 23°C) until symptoms appeared. Control plants were sprayed with sterilized water containing 0.01% Tween 20, and maintained in the same environment. After 30 days, sunken, oval lesions each with a salmon-colored center developed on the inoculated plants, and microscopic examination revealed the same pathogen morphology as the original isolates. C. coccodes was re-isolated consistently from leaf lesions. All non-inoculated control plants remained disease-free, and C. coccodes was not re-isolated from leaves of control plants. C. coccodes was reported infecting onions in the United States for the first time in Michigan in 2012 (1). This is the first report of anthracnose of onion caused by C. coccodes in Ohio. Unusually wet, warm conditions in Ohio in 2013 likely contributed to the outbreak of this disease. Timely fungicide applications will be necessary to manage this disease in affected areas. References: (1) A. K. Lees and A. J. Hilton. Plant Pathol. 52:3. 2003. (2) L. M. Rodriguez-Salamanca et al. Plant Dis. 96:769. 2012. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2020 ◽  
Author(s):  
Fangmin Hao ◽  
Quanyu Zang ◽  
Weihong Ding ◽  
Erlei Ma ◽  
Yunping Huang ◽  
...  

Melon (Cucumis melo L.) is a member of the Cucurbitaceae family, an important economical and horticultural crop, which is widely grown in China. In May 2020, fruit rot disease with water-soaked lesions and pink molds on cantaloupe melons was observed in several greenhouses with 50% disease incidence in Ningbo, Zhejiang Province in China. In order to know the causal agent, diseased fruits were cut into pieces, surface sterilized for 1 min with 1% sodium hypochlorite (NaClO), 2 min with 75% ethyl alcohol, rinsed in sterile distilled water three times (Zhou et al. 2018), and then placed on potato dextrose agar (PDA) medium amended with streptomycin sulfate (100 μg/ml) plates at 25°C for 4 days. The growing hyphae were transferred to new PDA plates using the hyphal tip method, putative Fusarium colonies were purified by single-sporing. Twenty-five fungal isolates were obtained and formed red colonies with white aerial mycelia at 25°C for 7 days, which were identified as Fusarium isolates based on the morphological characteristics and microscopic examination. The average radial mycelial growth rate of Fusarium isolate Fa-25 was 11.44 mm/day at 25°C in the dark on PDA. Macroconidia were stout with curved apical and basal cells, usually with 4 to 6 septa, and 29.5 to 44.2 × 3.7 to 5.2 μm on Spezieller Nährstoffarmer agar (SNA) medium at 25°C for 10 days (Leslie and Summerell 2006). To identify the species, the internal transcribed spacer (ITS) region and translational elongation factor 1-alpha (TEF1-α) gene of the isolates were amplified and cloned. ITS and TEF1-α was amplified using primers ITS1/ITS4 and EF1/EF2 (O’Donnell et al. 1998), respectively. Sequences of ITS (545 bp, GenBank Accession No. MT811812) and TEF1-α (707 bp, GenBank Acc. No. MT856659) for isolate Fa-25 were 100% and 99.72% identical to those of F. asiaticum strains MSBL-4 (ITS, GenBank Acc. MT322117.1) and Daya350-3 (TEF1-α, GenBank Acc. KT380124.1) in GenBank, respectively. A phylogenetic tree was established based on the TEF1-α sequences of Fa-25 and other Fusarium spp., and Fa-25 was clustered with F. asiaticum. Thus, both morphological and molecular characterizations supported the isolate as F. asiaticum. To confirm the pathogenicity, mycelium agar plugs (6 mm in diameter) removed from the colony margin of a 2-day-old culture of strain Fa-25 were used to inoculate melon fruits. Before inoculation, healthy melon fruits were selected, soaked in 2% NaClO solution for 2 min, and washed in sterile water. After wounding the melon fruits with a sterile needle, the fruits were inoculated by placing mycelium agar plugs on the wounds, and mock inoculation with mycelium-free PDA plugs was used as control. Five fruits were used in each treatment. The inoculated and mock-inoculated fruits were incubated at 25°C with high relative humidity. Symptoms were observed on all inoculated melon fruits 10 days post inoculation, which were similar to those naturally infected fruits, whereas the mock-inoculated fruits remained symptomless. The fungus re-isolated from the diseased fruits resembled colony morphology of the original isolate. The experiment was conducted three times and produced the same results. To our knowledge, this is the first report of fruit rot of melon caused by F. asiaticum in China.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2736-2736
Author(s):  
Chun-Yan Gu ◽  
Xue Yang ◽  
Mohamed N. Al-Attala ◽  
Muhammad Abid ◽  
Seinn Sandar May Phyo ◽  
...  

2011 ◽  
Vol 39 (4) ◽  
pp. 403-405 ◽  
Author(s):  
Edna Levy ◽  
Genya Elkind ◽  
Ruth Ben-Arie ◽  
I. S. Ben-Ze’ev

Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1190-1190
Author(s):  
L. X. Zhang ◽  
J. H. Song ◽  
G. J. Tan ◽  
S. S. Li

Curcuma (family Zingiberaceae) is commonly cultivated for the use of rhizomes within traditional Chinese medicines. In October 2009 and 2010, severe leaf blight was observed on Curcuma wenyujin Y.H. Chen & C. Ling (4) in fields located in Ruian, China. The area of cultivation in Ruian encompasses 90% of the production in Zhejiang Province. Disease incidence was approximately 90% of plants observed in affected fields. Early symptoms were yellow-to-brown, irregular-shaped lesions on the leaf margin or tip. After several days, lesions expanded along the mid-vein until the entire leaf was destroyed. Blighted leaves turned grayish to dark brown and withered, and severely affected plants died. Eight fungal isolates were recovered from symptomatic C. wenyujin leaves, collected from eight different fields, on potato dextrose agar (PDA). These fungal colonies were initially white, becoming light to dark gray and produced black, spherical to subspherical, single-celled conidia (14 to 17 × 12 to 15 μm), which were borne on a hyaline vesicle at the tip of the conidiophores. On the basis of these morphological features, the isolates appeared to be similar to Nigrospora sphaerica (2). Strain ZJW-1 was selected as a representative for molecular identification. Genomic DNA was extracted from the isolate, and the internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1-5.8S-ITS2) was amplified using ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) primers (3). The ITS region was further cloned and sequenced (GenBank Accession No. JF738028) and was 99% identical to N. sphaerica (GenBank Accession No. FJ478134.1). On the basis of morphological data and the ITS rDNA sequence, the isolate was determined to be N. sphaerica. Pathogenicity tests were conducted on four leaves of four C. wenyujin plants by placing agar pieces (5 mm in diameter) from 8-day-old cultures on pushpin-wounded leaves. An equal number of control plants were wounded and inoculated with noncolonized PDA agar pieces. Plants were placed in moist chambers at 25°C with a 12-h photoperiod. Brown-to-black lesions were observed on wounded leaves after 3 days and expanded to an average of 56 × 40 mm 15 days after inoculation. No symptoms developed on the control leaves. The pathogen was reisolated from the margins of necrotic tissues but not from the controls. The pathogen has been reported as a leaf pathogen on several hosts worldwide (1). To our knowledge, this is the first report of N. sphaerica as a leaf pathogen of C. wenyujin in China. Future research will focus primarily on management of this disease. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, USDA-ARS, Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , March 31, 2011. (2) E. W. Mason. Trans. Brit. Mycol. Soc. 12:152, 1927. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (4) J. Zhao et al. Molecules 15:7547, 2010.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Persimmon (Diospyros kaki L.) is widely grown in Italy, the leading producer in Europe. In the fall of 2009, a previously unknown rot was observed on 3% of fruit stored at temperatures between 5 and 15°C in Torino Province (northern Italy). The decayed area was elliptical, firm, and appeared light brown to dark olive-green. It was surrounded by a soft margin. The internal decayed area appeared rotten, brown, and surrounded by bleached tissue. On the decayed tissue, black pycnidia that were partially immersed and up to 0.5 mm in diameter were observed. Light gray conidia produced in the pycnidia were unicellular, ovoid or lacriform, and measured 3.9 to 6.7 × 2.3 to 3.5 (average 5.0 × 2.9) μm. Fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 23 and 26°C under alternating light and darkness. Colonies of the fungus initially appeared ash colored and then turned to dark greenish gray. After 14 days of growth, pycnidia and conidia similar to those described on fruit were produced. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 502-bp segment showed a 100% similarity with the sequence of Phacidiopycnis washingtonensis Xiao & J.D. Rogers (GenBank Accession No. AY608648). The nucleotide sequence has been assigned the GenBank Accession No. GU949537. Pathogenicity tests were performed by inoculating three persimmon fruits after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (10 mm in diameter), obtained from PDA cultures of one strain were placed on wounds. Three control fruits were inoculated with plain PDA. Fruits were incubated at 10 ± 1°C. The first symptoms developed 6 days after the artificial inoculation. After 15 days, the rot was very evident and P. washingtonensis was consistently reisolated. Noninoculated fruit remained healthy. The pathogenicity test was performed twice. Since P. washingtonensis was first identified in the United States on decayed apples (2), ‘Fuji’, ‘Gala’, ‘Golden Delicious’, ‘Granny Smith’, ‘Red Chief’, and ‘Stark Delicious’, apple fruits also were artificially inoculated with a conidial suspension (1 × 106 CFU/ml) of the pathogen obtained from PDA cultures. For each cultivar, three surface-disinfested fruit were wounded and inoculated, while three others served as mock-inoculated (sterile water) controls. Fruits were stored at temperatures ranging from 10 to 15°C. First symptoms appeared after 7 days on all the inoculated apples. After 14 days, rot was evident on all fruit inoculated with the fungus, and P. washingtonensis was consistently reisolated. Controls remained symptomless. To our knowledge, this is the first report of the presence of P. washingtonensis on persimmon in Italy, as well as worldwide. The occurrence of postharvest fruit rot on apple caused by P. washingtonensis was recently described in the United States (3). In Italy, the economic importance of the disease on persimmon fruit is currently limited, although the pathogen could represent a risk for apple. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) Y. K. Kim and C. L. Xiao. Plant Dis. 90:1376, 2006. (3) C. L. Xiao et al. Mycologia 97:473, 2005.


Sign in / Sign up

Export Citation Format

Share Document