scholarly journals Association of ‘Candidatus Liberibacter solanacearum’ with Zebra Chip Disease of Potato Established by Graft and Psyllid Transmission, Electron Microscopy, and PCR

Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 574-583 ◽  
Author(s):  
G. A. Secor ◽  
V. V. Rivera ◽  
J. A. Abad ◽  
I.-M. Lee ◽  
G. R. G. Clover ◽  
...  

A new disease of potatoes, tentatively named zebra chip (ZC) because of the intermittent dark and light symptom pattern in affected tubers which is enhanced by frying, was first found in Mexico in 1994 and in the southwestern United States in 2000. The disease can cause severe economic losses in all market classes of potatoes. The cause of ZC has been elusive, and only recently has been associated with ‘Candidatus Liberibacter’ sp. Field samples of potato plants were collected from several locations in the United States, Mexico, and Guatemala to determine transmission to potato and tomato by grafting of ZC-infected scions and psyllid feeding. The disease was successfully transmitted, through up to three generations, by sequential top- and side-grafting ZC-infection scions to several potato cultivars and to tomato. The disease was also successfully transmitted to potato and tomato plants in greenhouse experiments by potato psyllids collected from potato plants naturally affected with ZC. Transmission electron microscopic observation of ZC-affected tissues revealed the presence of bacteria-like organisms (BLOs) in the phloem of potato and tomato plants inoculated by grafting and psyllid feeding. The BLOs were morphologically similar in appearance to BLOs associated with other plant diseases. Polymerase chain reaction (PCR) amplified 16S rDNA sequences from samples representing different geographic areas, including the United States, Mexico, and Guatemala, were almost identical to the 16S rDNA of ‘Ca. L. solanacearum’ previously reported from solanaceous plants in New Zealand and the United States. Two subclades were identified that differed in two single base-pair substitutions. New specific primers along with an innovative rapid PCR were developed. This test allows the detection of the bacteria in less than 90 min. These data confirm the association of ‘Ca. L. solanacearum’ with potatoes affected by ZC in the United States, Mexico, and Guatemala.

Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 108-108 ◽  
Author(s):  
J. A. Abad ◽  
M. Bandla ◽  
R. D. French-Monar ◽  
L. W. Liefting ◽  
G. R. G. Clover

Zebra chip (ZC), an emerging disease causing economic losses to the potato chip industry, has been reported since the early 1990s in Central America and Mexico and in Texas during 2000 (4). ZC was subsequently found in Nebraska, Colorado, New Mexico, Arizona, Nevada, California, and Kansas (3). Severe losses to potato crops were reported in the last few years in Mexico, Guatemala, and Texas (4). Foliar symptoms include purple top, shortened internodes, small leaves, enlargement of the stems, swollen axillary buds, and aerial tubers. Chips made from infected tubers exhibit dark stripes that become markedly more visible upon frying, and hence, are unacceptable to manufacturers. Infected tubers may or may not produce plants when planted. The causal agent of ZC is not known and has been the subject of increased investigation. The pathogen is believed to be transmitted by the potato psyllid, Bactericera cockerelli, and the association of the vector with the disease is well documented (3). Following the report of a potential new liberibacter species in solanaceous crops in New Zealand, we sought to identify this liberibacter species in plants with symptoms of the ZC disease. Six potato plants (cv. Russet Norkota) exhibiting typical ZC symptoms were collected in Olton, TX in June of 2008. DNA was extracted from roots, stems, midribs, and petioles of the infected plants using a FastDNA Spin Kit and the FastPrep Instrument (Qbiogene, Inc., Carlsbad, CA). Negative controls from known healthy potato plants were included. PCR amplification was carried out with ‘Candidatus L. asiaticus’ omp primers (1), 16S rDNA primers specific for ‘Ca. L. asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’ (1), and 16S rDNA primers OA2 (GenBank Accession No. EU834130) and OI2c (2). Amplicons from 12 samples were directly sequenced in both orientations (McLab, San Francisco CA). PCR amplifications using species-specific primers for the citrus huanglongbing liberibacter were negative. However, 1.1- and 1.8-kb amplicons were obtained with the OA2/OI2C and omp primers, respectively. The sequences for the rDNA were submitted to NCBI GenBank (Accession Nos. EU884128 and EU884129). BLASTN alignment of the 16S rDNA sequences obtained with primers OA2 and OI2c revealed 99.7% identity with a new species of ‘Ca. Liberibacter’ identified in New Zealand affecting potato (GenBank Accession No. EU849020) and tomato (GenBank Accession No. EU834130), 97% identity with ‘Ca. L. asiaticus’, and 94% with ‘Ca. L. africanus’ and ‘Ca. L. americanus’. The neighbor-joining phylogenetic tree constructed using the 16S rDNA fragments delineated four clusters corresponding to each of the liberibacter species. These results confirm that ‘Ca. Liberibacter’ spp. DNA sequences were obtained from potatoes showing ZC-like symptoms, suggesting that a new species of this genus may be involved in causing ZC disease. To our knowledge, this is the first report of the detection of ‘Ca. Liberibacter’ spp. in potatoes showing ZC disease in the United States. References: (1) C. Bastianel et al. Appl. Environ. Microbiol. 71:6473, 2005. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) G. A. Secor and V. V. Rivera-Varas. Rev. Latinoamericana de la Papa (suppl.)1:1, 2004.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 659-665 ◽  
Author(s):  
D. C. Henne ◽  
F. Workneh ◽  
A. Wen ◽  
J. A. Price ◽  
J. S. Pasche ◽  
...  

An emerging disease of potato in the United States, known as “Zebra Chip” or “Zebra Complex” (ZC), is increasing in scope and threatens to spread further. Here, we report on studies performed to understand the role of tuberborne ZC in the epidemiology of this disease. Depending on variety, up to 44% of ZC-affected seed tubers (ZCST) were viable, producing hair sprouts and weak plants. Chip discoloration in progeny tubers of ZCST was more severe than those from ZC-asymptomatic seed tubers but varied depending on whether progeny tubers or foliage were positive or negative for ‘Candidatus Liberibacter solanacearum’. A low percentage of greenhouse-grown plants produced by ZCST tested positive for ‘Ca. Liberibacter’. No adult potato psyllids became infective after feeding upon these plants but they did acquire ‘Ca. Liberibacter’ from field-grown plants produced by ZCST. Plants with new ZC infections near plants produced by ZCST were not significantly different from healthy plants, whereas plants affected with ZC from infectious potato psyllids had significantly more ZC infections near either plants produced by ZCST or healthy plants. We conclude that, in areas where ZC is currently established, plants produced by ZCST do not significantly contribute to ZC incidence and spread within potato fields.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 552-552 ◽  
Author(s):  
J. E. Munyaneza ◽  
V. G. Sengoda ◽  
J. M. Crosslin ◽  
G. De la Rosa-Lozano ◽  
A. Sanchez

Zebra Chip (ZC), an emerging disease of potato (Solanum tuberosum L.) first documented in potato fields around Saltillo in México in 1994, has been identified in the southwestern United States, México, and Central America and is causing losses of millions of dollars to the potato industry (4). Recently, this damaging potato disease was also documented in New Zealand (3). This disease is characterized by a striped pattern of necrosis in tubers produced on infected plants, and fried chips processed from these infected tubers are commercially unacceptable (4). Recent studies conducted in the United States and New Zealand have associated ZC with a new species of ‘Candidatus Liberibacter’ vectored by the potato psyllid, Bactericera cockerelli Sulc (1,3,4). A bacterium designated ‘Candidatus Liberibacter psyllaurous’ has recently been identified in potato plants with “psyllid yellows” symptoms that resemble those of ZC (2). To investigate whether liberibacter is associated with ZC in México, 11 potato (cv. Atlantic) tuber samples exhibiting strong ZC symptoms and six asymptomatic tubers were collected from a ZC-affected commercial potato field near Saltillo City, Coahuila, México in September 2008 and tested for this bacterium by PCR. Total DNA was extracted from symptomatic and asymptomatic tubers with cetyltrimethylammoniumbromide (CTAB) buffer (4). DNA samples were tested by PCR using primer pair OA2/OI2c (5′-GCGCTTATTTTTAATAGGAGCGGCA-3′ and 5′-GCCTCGCGACTTCGCAACCCAT-3′, respectively) specific for 16S rDNA and primer pair CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′ and 5′-TATATCTATCGTTGCACCAG-3′, respectively) designed from ribosomal protein genes (3). Seven of eleven (63.7%) ZC-symptomatic tubers and one of six (16.7%) asymptomatic potatoes yielded the expected 1,168-bp 16S rDNA and 669-bp CL514F/R amplicons, indicating the presence of liberibacter. Amplicons generated from symptomatic tubers were cloned into pCR2.1-Topo plasmid vectors (Invitrogen, Carlsbad, CA) and one clone of each amplicon was sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the ZC OA2/OI2c sequence (GenBank Accession No. FJ498806) showed 100% identity to liberibacter 16S rDNA sequences amplified from potato psyllids from Dalhart, TX and potato tubers from Garden City, KS (GenBank Accession Nos. EU921627 and EU921626, respectively). The ZC CL514F/R sequence (GenBank Accession No. FJ498807) was 98% identical to analogous rplJ and rplL liberibacter ribosomal protein gene sequences amplified from several solanaceous plants in New Zealand (GenBank Accession Nos. EU834131 and EU935005). The OA2/OI2c sequence was also identical to the 16S rDNA sequence (Genbank Accession No. EU812559) of ‘Ca. Liberibacter psyllaurous’ (2). To our knowledge, this is the first report of ‘Ca. Liberibacter psyllaurous’ associated with ZC-affected potatoes in México. References: (1) J. A. Abad et al. Plant Dis. 93:108, 2009. (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 92:1474, 2008. (4) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 468-474 ◽  
Author(s):  
K. D. Swisher Grimm ◽  
S. F. Garczynski

In 2017, potato tubers suspected of being infected with the bacterium ‘Candidatus Liberibacter solanacearum’ were received from the Animal and Plant Health Inspection Service in the United States. A total of 368 chipping tubers were observed for internal symptoms of zebra chip disease, which is associated with ‘Ca. L. solanacearum’ infection in the United States, Mexico, Central America, and New Zealand. A single tuber sliced at the stem end showed classic zebra chip symptoms of darkened medullary rays, with streaking and necrotic flecking. The symptomatic tuber was confirmed positive for the bacterium by polymerase chain reaction targeting three different ‘Ca. L. solanacearum’ genes. Sequence analysis of these three genes, and subsequent BLAST analysis, identified the pathogen with 99, 98, and 97% identity to ‘Ca. L. solanacearum’ for the 16S ribosomal RNA gene, 50S ribosomal proteins L10/L12 genes, and the outer membrane protein gene, respectively. Sequence analysis did not identify the sample as one of the six known haplotypes of ‘Ca. L. solanacearum,’ indicating that a seventh haplotype of the pathogen was identified. This new haplotype, designated haplotype F, is now the third haplotype of the bacterium that infects Solanum tuberosum in the United States.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 551-551 ◽  
Author(s):  
J. M. Crosslin ◽  
G. Bester

A disease that severely affects processing potatoes (Solanum tuberosum L.), termed zebra chip (ZC), has been identified in several locations in the United States (Texas, Nebraska, Colorado, Kansas, New Mexico, Arizona, and Nevada), Mexico, and Central America (4). The disease name comes from the rapid oxidative darkening of freshly cut tubers and the dark stripes and blotches that occur in chips processed from infected tubers. Recently, the disorder has been associated with a new ‘Candidatus Liberibacter’ species in New Zealand (3). Also, a bacterium designated ‘Candidatus Liberibacter psyllaurous’ has been identified recently in potato plants with “psyllid yellows” symptoms that resemble foliar symptoms of ZC (2). In the fall of 2008, 10 tubers were received at the Prosser laboratory from a commercial potato grower and five had symptoms characteristic of ZC. The tubers, cv. Dakota Pearl, were grown near Lancaster in southern California. The tubers showed rapid oxidation upon slicing and the sunken stolon attachment characteristic of ZC (4). Nucleic acid was extracted from symptomatic tubers (1) and tested by PCR for ‘Ca. Liberibacter’ species with primer pairs OA2/OI2c (5′-GCGCTTATTTTTAATAGGAGCGGCA-3′ and 5′-GCCTCGCGACTTCGCAACCCAT-3′) and CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′ and 5′-TATATCTATCGTTGCACCAG-3′), which amplify from the 16S rDNA and rplJ and rplL ribosomal protein genes, respectively (3). Four of the five tubers with distinct ZC symptoms yielded the expected amplicons with both primer pairs. Two tubers with mild internal discoloration yielded correctly sized amplicons but in lesser amounts than from the severely affected tubers. Nucleic acid from healthy potato tubers yielded no product with these primers. One clone of the 1,168-bp OA2/OI2c amplicon and two clones of the 669-bp CL514F/R amplicon from a strongly positive sample were sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST alignments of the consensus sequences of the OA2/OI2c and CL514F/R amplicons (GenBank Accessions Nos. FJ498802 and FJ498803, respectively) revealed 100% identity with analogous ‘Ca. Liberibacter’ sequences reported from ZC-symptomatic potatoes in New Zealand (GenBank Accession Nos. EU849020 and EU919514). The OA2/OI2c amplicon was also identical to a sequence of ‘Ca. Liberibacter psyllaurous’ (GenBank Accession No. EU812559) from psyllid yellows-affected potatoes in the United States (2) and also showed a 99% identity with sequences from a ‘Ca. Liberibacter’ species reported in ZC tubers from Kansas (GenBank Accession No. EU921626). Potato crops with symptoms of ZC have been observed previously in California (4), but this is the first identification of ‘Ca. Liberibacter psyllaurous’ from diseased potatoes grown in California. Since ZC was first reported in the mid- to late-1990s, information from potato growers and processors suggests that ZC is becoming more important. The disease has caused millions of dollars in losses, particularly in south Texas (4). The identification of ‘Ca. Liberibacter psyllaurous’ in California provides additional evidence that the disease is increasing in importance in other potato-growing regions. References: (1) J. M. Crosslin et al. Plant Dis. 90:663, 2006. (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 92:1474, 2008. (4) J. E. Munyaneza et al. Subtrop. Plant Sci. 59:30, 2007.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
B. Bextine ◽  
A. Arp ◽  
E. Flores ◽  
E. Aguilar ◽  
L. Lastrea ◽  
...  

In September 2011, potato (Solanum tuberosum) tubers grown in Nicaragua outside of Estelí and Jinotega were observed with internal discoloration suggestive of zebra chip (ZC); and the plants showed foliar symptoms of chlorosis, leaf scorching, wilting, vascular discoloration, swollen nodes, twisted stems, and aerial tubers (3). Disease incidence ranged from 50 to 95% in eight fields ranging from 5 to 12 ha in the Estelí and Jinotega regions of Nicaragua. Leaf samples and psyllids were collected from two fields, and total DNA was purified from the leaves of 17 symptomatic and 10 asymptomatic plants. DNA was also extracted from 20 individual potato psyllids. Primers specific for 16S rDNA (OA2 and OI2c) and the surface antigen gene (OMB 1482f and 2086r) of Candidatus Liberibacter solanacearum (CLs) were used to confirm the presence of the pathogen in infected potatoes and insects (2). All symptomatic potato leaf samples tested positive for the presence of CLs using both primers, and no asymptomatic plants had positive results. Seven insects tested positive for the presence of CLs. 16S rDNA sequences obtained for all positive samples (1,071 bp) were identical and showed 99 to 100% identity to a number of rDNA sequences of CLs in GenBank (Accession Nos. HM246509 and FJ957897). 16S rDNA sequences from two CLs-infected plants, one from Estelí, Nicaragua (JX559779) and one from Jinotega, Nicaragua (JK559780), were deposited in GenBank. Identity of insects was done using a morphological key, and then verified as Bactericera cockerelli using a real-time PCR assay with melt temperature analysis of the cytochrome c oxidase 1 gene, as described by Chapman et al. (1). Sequencing of the amplified DNA yielded an approximately 63-bp read, with 100% homology to reference sequences of B. cockerelli (AY971886) and those obtained from psyllids collected in McAllen, TX, in 2010. B. cockerelli samples were collected from both locations. Similar to previous reports of ZC in new locations, foliar and tuber symptoms associated with ZC were observed in all eight fields in these two Nicaraguan potato-growing regions, specific PCR amplification with two primer pairs was completed, 16S rDNA sequence analyses showed 100% similarity to reference sequences of CLs, and the presence of potato psyllids which tested positive for the presence of CLs provide evidence that ZC is now present in Nicaragua. Potatoes rank in the top 20 commodities produced in Nicaragua, resulting in >$4.5M annual revenue. Because CLs has caused significant economic damage to potatoes in the United States, Mexico, Guatemala, and Honduras, this finding has significance for potato production in Central America. References: (1) R. I. Chapman et al. Southwest. Entomol. 37:475, 2012. (2) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (3) L. W. Liefting et al. Internat. J. Syst. Evol. Microbiol. 59:2274, 2009.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 453-453 ◽  
Author(s):  
J. M. Crosslin ◽  
N. Olsen ◽  
P. Nolte

In September 2011, potato (Solanum tuberosum L.) tubers graded in a packing facility in south-central Idaho were observed with internal discolorations suggestive of zebra chip disease (ZC). Symptoms were observed in 1 to 2% of tubers of cv. Russet Norkotah and included brown spots and streaks especially in and near the vascular tissue. Some tubers also showed a dark and sunken stolon attachment typical of ZC (1). Initially, tissue samples were taken from seven symptomatic tubers and tested by PCR for “Candidatus Liberibacter solanacearum”, the bacterium associated with ZC. Primers specific for the 16S rDNA (primers CLipoF [4] and OI2c [3]) and the outer membrane protein (OMB 1482f and 2086r) (2) were used. Six of these samples were positive for the bacterium. The amplified 16S rDNA and OMB products from two symptomatic tubers of cv. Russet Norkotah were cloned and three clones of each were sequenced. The 16S sequences (1,071 bp; GenBank Accession Nos. JN848755 and JN848756) from the two tubers varied by one nucleotide and had 99 to 100% sequence identity to numerous “Ca. L. solanacearum” sequences in GenBank (e.g., Accession Nos. HM246509, FJ957897, and EU935004). Sequences of the two OMB clones (605 bp; GenBank Accession Nos. JN848757 and JN848758) had 97% sequence identity to the two “Ca. L. solanacearum” OMB sequences in GenBank (Accession Nos. CP002371 and FJ914617). Six of eight additional symptomatic field-collected cv. Russet Norkotah tubers corresponding to tubers collected in the packing facility were also positive for “Ca. L. solanacearum” by PCR. Additional severely symptomatic tubers of cvs. Russet Burbank, Yukon Gold, and raw cut French fries of Ranger Russet produced in south-central Idaho were subsequently tested by PCR and were found to be positive for “Ca. L. solanacearum” as well. On the basis of the symptoms, specific PCR amplification with two distinct primer pairs and DNA sequence analysis, zebra chip disease caused by “Ca. L. solanacearum” was determined to be present in Idaho. This disease has caused significant economic damage to potatoes in many regions, including Texas, Mexico, Central America, and New Zealand (1). Idaho is the largest potato-producing state in the United States, with over 150,000 ha planted this year, and therefore, ZC potentially poses a significant risk to agriculture in this state. References: (1) J. M. Crosslin et al. Online publication. doi:10.1094/PHP-2010-0317-01-RV, Plant Health Progress, 2010. (2) J. M. Crosslin et al. Southwest. Entomol. 36:125, 2011. (3) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (4) G. A. Secor. Plant Dis. 93:574, 2009.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 376-376 ◽  
Author(s):  
M. Rehman ◽  
J. C. Melgar ◽  
J. M. Rivera C. ◽  
A. M. Idris ◽  
J. K. Brown

From 2006 to 2009, all commercial potato fields in Azacualpa F.M. Honduras were heavily infested with the potato psyllid Bactericera cockerelli (Sulc.). Plants exhibited interveinal chlorosis, vein-greening, downward curling, stunting, above ground tuber formation, and brownish flecks in some tubers. Disease incidence ranged from 50 to 95%. Leaf samples and psyllids were collected from seven fields in two potato-growing regions of Honduras. Total DNA was purified from the leaves of 30 symptomatic and three asymptomatic plants. DNA was extracted from 20 adult and 10 immature (4th to 5th instar) psyllids according to Frohlich et al (1). PCR primers, PSY680F 5′-GTTCGGAATAACTGGGCGTA-3′ and PSY1R 5′-CCCATAAGGGCCATGAGGACT-3′, were used to amplify a 680-bp fragment of the 16S rDNA for the recently described “Candidatus Liberibacter physallaurous” (2) and “Ca. L. solanacearum” (3). PSY1R/PSY680F primer design was based on the association of a previously undescribed liberibacter with vein-greening symptoms in greenhouse tomato plants in Arizona from 2006 to 2007 (GenBank Accession No. GQ926918) that lead to the hypothesis that a similar bacterium could be associated with symptomatic potato plants in Honduras. PCR amplification, cloning, and sequencing of the resultant 16S rDNA amplicons indicated that 17 of 30 potato plants, 8 of 20 adult and 7 of 10 third to fourth instar psyllids, respectively, were positive for liberibacter based on 99 to 100% shared nucleotide sequence (nt) identity with the analogous sequence from liberibacter (EU812558 [2]). To substantiate these results, a second molecular marker was targeted using the 1611F and 480R primers (~980 bp) that amplify the 16S-23S-ITSrDNA of liberibacter (2) for selected liberibacter-positive samples (above). Amplicons of the expected size were obtained from 12 of 17 potato and 7 of 10 immature psyllids. No PCR product of the expected size was obtained from asymptomatic potato samples or the PCR negative (water) control. The resultant PCR amplicons were cloned and 12 to 15 clones per amplicon were sequenced. The sequences were aligned and the percentage pair wise nt identity was calculated by Clustal W revealing that the 16S rDNA and 16S-23S-ITS sequences, respectively, shared 99 to 100% nt identity with each other. BLAST analysis against the NCBI database indicated that the 16S rRNA sequences from potato plants (GQ926922) and immature psyllids (GQ926923), and the 16S-ITS-23S sequence from potato plants (GQ926924) and immature psyllids (GQ926925), shared 98.5 to 100% nt identity with ‘Ca. Liberibacter’ reported from potato (EU812556; [2,4]) and tomato (EU812558, EU812559, EU935005; [2,3]). Evidence for the widespread presence of liberibacter and the potato psyllid in potato fields in Honduras, together with foliar and tuber symptoms that are reminiscent of those recently described in potato plants in the United States affected with ‘zebra chip’ disease (4), suggest that a similar or identical disease of the potato also occurs in Honduras. This emergent disease poses a serious threat to potato production in Honduras and elsewhere in Central America. References: (1) D. R. Frohlich et al., Mol. Ecol. 8:1683, 1999. (2) A. K. Hansen et al. Appl. Environ. Microbiol. 78:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 93:208, 2009. (4) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007.


Author(s):  
Andrew Schmitz ◽  
Charles B. Moss ◽  
Troy G. Schmitz

AbstractThe COVID-19 crisis created large economic losses for corn, ethanol, gasoline, and oil producers and refineries both in the United States and worldwide. We extend the theory used by Schmitz, A., C. B. Moss, and T. G. Schmitz. 2007. “Ethanol: No Free Lunch.” Journal of Agricultural & Food Industrial Organization 5 (2): 1–28 as a basis for empirical estimation of the effect of COVID-19. We estimate, within a welfare economic cost-benefit framework that, at a minimum, the producer cost in the United States for these four sectors totals $176.8 billion for 2020. For U.S. oil producers alone, the cost was $151 billion. When world oil is added, the costs are much higher, at $1055.8 billion. The total oil producer cost is $1.03 trillion, which is roughly 40 times the effect on U.S. corn, ethanol, and gasoline producers, and refineries. If the assumed unemployment effects from COVID-19 are taken into account, the total effect, including both producers and unemployed workers, is $212.2 billion, bringing the world total to $1266.9 billion.


Sign in / Sign up

Export Citation Format

Share Document