scholarly journals Occurrence of Pod Rot Pathogens in Peanuts Grown in North Carolina

Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1345-1349 ◽  
Author(s):  
J. E. Hollowell ◽  
B. B. Shew ◽  
M. K. Beute ◽  
Z. G. Abad

Pod rot diseases historically caused significant losses in peanut production in North Carolina. Advances in the understanding of pod rot diseases and changes in cultural practices minimized losses in the years since 1979. By the early 1990s, however, some peanut growers began to observe pod rot that apparently was not associated with infection by common soilborne pathogens. Incidence of pod rot also was high in research plots used to study conservation tillage methods. Selected farms were surveyed in the fall of 1994, 1995, and 1996 to identify the fungi associated with pod rot symptoms in North Carolina. Over the three years of the study, more than 6,000 symptomatic pods from 125 peanut fields were assayed for Rhizoctonia spp., Pythium spp., Cylindrocladium parasiticum, Sclerotium rolfsii, and Sclerotinia minor. All five pathogens were isolated during the field survey, with Pythium spp. and Rhizoctonia spp. isolated most frequently. Rhizoctonia spp. were the dominant pathogen in the majority of fields in 1994, whereas Pythium spp. predominated in 1995 and 1996. Combinations of pathogens were identified from 12 to 15% of pods; Rhizoctonia spp. + Pythium spp. and Pythium spp. + C. parasiti-cum were the most frequent combinations. The mean estimated incidence of pod rot was 6.6% in 1995 and 5.9% in 1996. The effects of cover crops and tillage on pod rot incidence were studied in microplots in 1995 and 1996. In 1995, winter cover crops (wheat, oat, rye, and fallow soil) did not affect pod rot incidence, but incidence was greater in no-till treatments compared to plots with conventional tillage. Pod rot incidence did not differ among infestation treatments and no interactions among pathogen, cover crop, or tillage treatments were significant. In contrast, significant (P = 0.04) interactions among winter cover crops and tillage occurred in 1996. Tillage did not affect pod rot incidence following wheat or oats, but incidence following rye was much greater in no-till than in tilled plots.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


1989 ◽  
Vol 53 (4) ◽  
pp. 1210-1214 ◽  
Author(s):  
J. C. Zhu ◽  
C. J. Gantzer ◽  
S. H. Anderson ◽  
E. E. Alberts ◽  
P. R. Beuselinck

2006 ◽  
Vol 70 (6) ◽  
pp. 1936-1944 ◽  
Author(s):  
M. B. Villamil ◽  
G. A. Bollero ◽  
R. G. Darmody ◽  
F. W. Simmons ◽  
D. G. Bullock

2014 ◽  
Vol 30 (5) ◽  
pp. 473-485 ◽  
Author(s):  
Natalie P. Lounsbury ◽  
Ray R. Weil

AbstractOrganic no-till (NT) management strategies generally employ high-residue cover crops that act as weed-suppressing mulch. In temperate, humid regions such as the mid-Atlantic USA, high-residue winter cover crops can hinder early spring field work and immobilize nutrients for cash crops. This makes the integration of cover crops into rotations difficult for farmers, who traditionally rely on tillage to prepare seedbeds for early spring vegetables. Our objectives were to address two separate but related goals of reducing tillage and integrating winter cover crops into early spring vegetable rotations by investigating the feasibility of NT seeding spinach (Spinacia oleracea L.), an early spring vegetable, into winterkilled cover crops. We conducted a four site-year field study in the Piedmont and Coastal Plain regions of Maryland, USA, comparing seedbed conditions and spinach performance after forage radish (FR) (Raphanus sativus L.), a low-residue, winterkilled cover crop, spring oat (Avena sativa L.), the traditional winterkilled cover crop in the area, a mixture of radish and oat, and a no cover crop (NC) treatment. NT seeded spinach after FR had higher yields than all other cover crop and tillage treatments in one site year and was equal to the highest yielding treatments in two site years. Yield for NT spinach after FR was as high as 19 Mg ha−1 fresh weight, whereas the highest yield for spinach seeded into a rototilled seedbed after NC was 10 Mg ha−1. NT seeding spring spinach after a winterkilled radish cover crop is feasible and provides an alternative to both high-residue cover crops and spring tillage.


2021 ◽  
Vol 9 (2) ◽  
pp. 130
Author(s):  
Juliana Gress Bortolini ◽  
Cláudio Roberto Fonsêca Sousa Soares ◽  
Matheus Junckes Muller ◽  
Guilherme Wilbert Ferreira ◽  
Edenilson Meyer ◽  
...  

Crop systems using cover crops affect soil physical, chemical, and biological attributes, including aggregate formation. This work aims to evaluate winter cover crop species' effect on soil total organic carbon, glomalin, and aggregation in areas with onion crops in a no-tillage vegetable production system (NTVS) and conventional tillage system (CTS) for eight years. The experiment treatments were: control, with natural vegetation(NV); black oats (Avena strigosa); rye(Secale cereale);oilseed radish(Raphanus sativus);intercropped black oats and oilseed radish; intercropped rye and oilseed radish; and a conventional tillage systems area. A 33-year old adjacent secondary forest was evaluated as a reference for undisturbed conditions. We assessed soil total organic carbon, total glomalin, and easily extractable glomalin in three soil layers (0-5, 5-10, and 10-20 cm depth). Undisturbed samples were used to quantify soil aggregate stability, aggregation indexes (weighted mean diameter; geometric mean diameter), aggregate mass distribution (macroaggregates, mesoaggregates), and macroaggregate carbon contents. The conventional tillage areas had the lowest weighted mean soil aggregate diameter, geometric mean diameter, and macroaggregate mass. Those areas also had the lowest bulk soil and aggregate organic carbon contents and the lowest total and easily extractable glomalin. Winter cover crops' use resulted in a 10% higher aggregate weighted mean diameter and geometric mean diameter. Areas with cover crops had 13% higher organic carbon contents in aggregates and 17% higher macroaggregate mass than conventional tillage areas. The highest values of total and easily extracted glomalin occurred in plots with black oats. Winter cover crops, single or intercropped, improved physical attributes of soils with onion crops under not-tillage compared to conventional tillage areas.


HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 429f-429
Author(s):  
S.C. Phatak ◽  
D.R. Sumner ◽  
R.B. Chalfant ◽  
J.D. Gay ◽  
L.D. Chandler ◽  
...  

Cover crops relay-cropped with vegetables with conservation tillage were compared with fallow conventional production for 10 years. Conservation till-relay received no pesticide and only one-quarter the recommended fertilizers. Winter cover provided significantly better weed control than conventional. Weed problems in relay occurred only in the rows where vegetables were planted. Legume winter covers increased soilborne organisms but did not influence root disease severity or postemergence damping-off. Thrips, aphids, and whiteflies were most frequent. These pests remained below the economic threshold with winter cover crop-relay. However, infestation of these pests and Colorado potato beetles was severe in conventional plots. Winter cover crops provided habitat for more than 14 beneficial insects.


2021 ◽  
Vol 166 ◽  
pp. 104068
Author(s):  
Courtland Kelly ◽  
Steven J. Fonte ◽  
Anil Shrestha ◽  
Kent M. Daane ◽  
Jeffrey P. Mitchell

Sign in / Sign up

Export Citation Format

Share Document