scholarly journals First Report of Grapevine Downy Mildew (Plasmopara viticola) in Commercial Viticulture in Western Australia

Plant Disease ◽  
1999 ◽  
Vol 83 (3) ◽  
pp. 301-301 ◽  
Author(s):  
S. J. McKirdy ◽  
I. T. Riley ◽  
I. J. Cameron ◽  
P. A. Magarey

Despite the suitability of climate, Western Australia was one of the few grape (Vitis vinifera L.) growing areas free of grapevine downy mildew (Plasmopara viticola (Berk. & M. A. Curtis) Berl. & De Toni in Sacc.). Area freedom had been maintained by restricting the movement of host material and machinery from outside the state and fungicide use in Western Australia vineyards had been considerably less. P. viticola was detected in 1997 in 14 of 15 vines growing at Kalumburu, a remote community in the semi-arid tropics of Western Australia, and was eradicated. In October 1998, grape leaves with oilspots typical of downy mildew were received from a grower in the Swan Valley near Perth, one of the main production areas of Western Australia. Sporangia were hyaline and ellipsoid (14 × 11 μm), were borne on treelike sporangiophores, and were consistent with those described for P. viticola (1). This is the first record of P. viticola in commercial viticulture in Western Australia. A response plan for exotic diseases was activated and after 2 weeks of surveillance the disease was found in 45 of 70 vineyards surveyed of the 280 vineyards in the Swan Valley. Given the extent of spread, eradication of downy mildew was not considered possible. Weather data for August to October 1998 indicated the likelihood of several infection periods from budburst to flowering when the disease was first detected. Crop loss will be considerable in many vineyards. P. viticola was also found in bench-grafted cuttings in pots in leaf consigned from the Swan Valley to several other areas in August 1998. Downy mildew was found in other areas only in association with these consigned vines. An industry code of practice, including hygiene, is being developed to slow the rate of spread of P. viticola in Western Australia. Reference: (1) Anon. C.M.I. Descriptions of Pathogenic Fungi and Bacteria No. 980, 1989.

2021 ◽  
Vol 22 (2) ◽  
pp. 940
Author(s):  
Elodie Vandelle ◽  
Pietro Ariani ◽  
Alice Regaiolo ◽  
Davide Danzi ◽  
Arianna Lovato ◽  
...  

Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew.


2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.


2021 ◽  
Vol 13 (3) ◽  
pp. 1226
Author(s):  
Ana Cruz-Silva ◽  
Andreia Figueiredo ◽  
Mónica Sebastiana

Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 34
Author(s):  
Camelia Ungureanu ◽  
Liliana Cristina Soare ◽  
Diana Vizitiu ◽  
Mirela Calinescu ◽  
Irina Fierascu ◽  
...  

In order to test some biofungicides, the isolation of Plasmopara viticola was carried out.Plasmopara viticola is a fungus that causes the grapevine downy mildew disease [...]


2020 ◽  
Vol 30 (20) ◽  
pp. 3897-3907.e4 ◽  
Author(s):  
Yann Dussert ◽  
Ludovic Legrand ◽  
Isabelle D. Mazet ◽  
Carole Couture ◽  
Marie-Christine Piron ◽  
...  

2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Yann Dussert ◽  
Jérôme Gouzy ◽  
Sylvie Richart-Cervera ◽  
Isabelle D. Mazet ◽  
Laurent Delière ◽  
...  

Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.


ChemInform ◽  
2012 ◽  
Vol 43 (9) ◽  
pp. no-no
Author(s):  
Muna Ali Abdalla ◽  
Hnin Yu Win ◽  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Anja Schueffler ◽  
...  

2011 ◽  
Vol 64 (10) ◽  
pp. 655-659 ◽  
Author(s):  
Muna Ali Abdalla ◽  
Hnin Yu Win ◽  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Anja Schüffler ◽  
...  

2011 ◽  
Vol 24 (8) ◽  
pp. 938-947 ◽  
Author(s):  
Md. Tofazzal Islam ◽  
Andreas von Tiedemann ◽  
Hartmut Laatsch

The motility of zoospores is critical in the disease cycles of Peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites, we found that ethyl acetate extracts of a marine Streptomyces sp. strain B5136 rapidly impaired the motility of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 0.1 μg/ml. The active principle in the extracts was identified as staurosporine, a known broad-spectrum inhibitor of protein kinases, including protein kinase C (PKC). In the presence of staurosporine (2 nM), zoospores moved very slowly in their axis or spun in tight circles, instead of displaying straight swimming in a helical fashion. Compounds such as K-252a, K-252b, and K-252c structurally related to staurosporine also impaired the motility of zoospores in a similar manner but at varying doses. Among the 22 known kinase inhibitors tested, the PKC inhibitor chelerythrine was the most potent to arrest the motility of zoospores at concentrations starting from 5 nM. Inhibitors that targeted kinase pathways other than PKC pathways did not practically show any activity in impairing zoospore motility. Interestingly, both staurosporine (5 nM) and chelerythrine (10 nM) also inhibited the release of zoospores from the P. viticola sporangia in a dose-dependent manner. In addition, staurosporine completely suppressed downy mildew disease in grapevine leaves at 2 μM, suggesting the potential of small-molecule PKC inhibitors for the control of peronosporomycete phytopathogens. Taken together, these results suggest that PKC is likely to be a key signaling mediator associated with zoosporogenesis and the maintenance of flagellar motility in peronosporomycete zoospores.


Sign in / Sign up

Export Citation Format

Share Document