scholarly journals Systemic Insecticides and Plant Age Affect Beet Curly Top Virus Transmission to Selected Host Plants

Plant Disease ◽  
1999 ◽  
Vol 83 (4) ◽  
pp. 351-355 ◽  
Author(s):  
Heping Wang ◽  
P. de A. Gurusinghe ◽  
Bryce W. Falk

Greenhouse and field studies were conducted to assess the effects of systemic insecticides and plant age on beet curly top virus (BCTV) transmission to sugar beet, tomato, pepper, melon, and cowpea. Sugar beets were the most susceptible to BCTV infection. For all BCTV-susceptible plants tested, younger plants showed greater susceptibility to infection than did older plants, even when inoculations were delayed by only 1 week. Systemic insecticides applied to test plants resulted in increased beet leafhopper (Circulifer tenellus) mortality and decreased the percent BCTV transmission. Soil treatment with imidacloprid (250 g a.i./ha) gave significantly better reductions in BCTV transmission than did dimethoate foliar sprays (280 g a.i./ha). These data suggest that the use of specific systemic insecticides only when crop plants are most susceptible to BCTV infection could be an effective alternative component of the curly top disease control program.

2020 ◽  
Vol 21 (1) ◽  
pp. 71-76
Author(s):  
Erik Lehnhoff ◽  
Rebecca Creamer

Curly top is an important widespread disease in semiarid regions that can be caused by several Curtovirus and Becurtovirus species. The strains of beet curly top virus (BCTV) have been some of the most widely reported to be associated with curly top. The viruses causing curly top are phloem limited and transmitted by the beet leafhopper (BLH), Circulifer tenellus Baker (Hemiptera: Cicadellidae). The BLH can also transmit other important pathogens such as phytoplasmas. Both the virus and insect vector have a broad host range of crops and weeds, including the winter annual weed London rocket (Sisymbrium irio L.). Prior prediction of disease would allow growers a window of opportunity to make informed management choices. A prediction model of BLH abundance was developed for southern New Mexico based on fall precipitation, which corresponds with London rocket emergence, and BLH sticky trap catch data for 2001 to 2018. Regression analyses showed positive associations between BLH numbers and October + November rainfall (P < 0.001) for two areas within southern New Mexico. A third area, where good weed management was used, had lower BLH numbers, and the relationship with precipitation was not significant (P = 0.190). Cumulative-season BLH abundance was correlated with BLH abundance in late April (r = 0.43) and late May (r = 0.56), indicating that early season knowledge of BLH abundance is useful for planning later season management. Although models based on October + November precipitation are good predictors of BLH abundance through June, they may not predict year-long BLH abundance because other environmental and biological factors contribute to subsequent BLH success and movement.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Jarren Ray ◽  
Jill Schroeder ◽  
Rebecca Creamer ◽  
Leigh Murray

London rocket is a common winter annual weed in southern New Mexico that can host beet curly top virus and its insect vector, the beet leafhopper. Experiments were conducted in southern New Mexico to determine if London rocket could serve as a host for overwintering beet leafhopper. Field experiments were carried out from 2002 to 2003 and from 2003 to 2004 to compare the impact of three London rocket planting dates on plant emergence and life history and leafhopper survival. Emergence was highest in October-planted London rocket, low in January/February plantings, and did not occur for August plantings. The life cycle was 185 d and 125 d for October- and January-planted London rocket, respectively, and growth of the plant (including height and rosette base diameter) was greater for London rocket that was planted in October. October-planted London rocket survived from late October through mid to late April, the period of time needed to serve as an overwintering host for beet leafhoppers. Caging the plants to assess beet leafhopper survival did not affect rate of plant growth, but it reduced the time to flowering for October-planted London rocket and increased the height and weight of plants. Beet leafhoppers were able to survive for approximately 2 mo in early winter or spring on caged London rocket plants.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1586-1590 ◽  
Author(s):  
Silvia I. Rondon ◽  
Mary Sue Roster ◽  
Launa L. Hamlin ◽  
Kelsie J. Green ◽  
Alexander V. Karasev ◽  
...  

The beet leafhopper, Circulifer tenellus, is an agriculturally important pest, particularly in the western United States. This insect transmits the Beet curly top virus (BCTV) to multiple crops, including bean, tomato, and pepper. In this study, we investigated the incidence of BCTV in individual leafhoppers collected at several sites in northeastern Oregon during the growing season in 2007, 2008, and 2009. Of the 800 insects tested, 151 (18.9%) were found positive for the virus. Percentage of virus incidence varied from 0% at one location in 2009 to a high of 55.6% for a location sampled in 2008. The complete virus genomes from one virus-positive insect collected in each of the 3 years were determined. BLAST analysis of the BCTV whole-genome sequences from 2007, 2008, and 2009 insects showed 98, 94, and 96% identities with the BCTV-Worland sequence (AY134867), respectively. The BCTV_2008 sequence showed the greatest identity (96%) with another BCTV genomic sequence (JN817383), and was found to be a recombinant between the BCTV-Worland type, representing the majority of the genome (approximately 2.2 kb), and the BCTV-CFH type that provided an approximately 0.8-kb fragment spanning replication-related genes C1 and C2. This area of the BCTV genome, between the C1 and C2 genes, was previously found to carry symptom determinants of the virus, and the data may suggest more severe effects of BCTV during the 2008 season. Results indicate that BCTV is common and widespread in C. tenellus in eastern Oregon and that there is substantial genetic diversity among the virus strains present in this important field and vegetable crop-growing region.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fereshteh Ghahvechi Khaligh ◽  
Abbas Jafari ◽  
Elena Silivanova ◽  
Mikhail Levchenko ◽  
Bahlol Rahimi ◽  
...  

Abstract Background Malaria is the most common vector-borne disease transmitted to humans by Anopheles mosquitoes. Endectocides and especially ivermectin will be available as a vector control tool soon. The current review could be valuable for trial design and clinical studies to control malaria transmission. Methods PubMed/MEDLINE, Scopus, Web of Science, and Science Direct were searched for original English published papers on (“Malaria chemical control” OR “Malaria elimination” OR “Anopheles vector control” OR “Malaria zooprophylaxis”) AND (“Systemic insecticides” OR “Endectocides” OR “Ivermectin”). The last search was from 19 June 2019 to 31 December 2019. It was updated on 17 November 2020. Two reviewers (SG and FGK) independently reviewed abstracts and full-text articles. Data were extracted by one person and checked by another. As meta-analyses were not possible, a qualitative summary of results was performed. Results Thirty-six published papers have used systemic insecticides/endectocides for mosquito control. Most of the studies (56.75%) were done on Anopheles gambiae complex species on doses from 150 μg/kg to 400 μg/kg in several studies. Target hosts for employing systemic insecticides/drugs were animals (44.2%, including rabbit, cattle, pig, and livestock) and humans (32.35%). Conclusions Laboratory and field studies have highlighted the potential of endectocides in malaria control. Ivermectin and other endectocides could soon serve as novel malaria transmission control tools by reducing the longevity of Anopheles mosquitoes that feed on treated hosts, potentially decreasing Plasmodium parasite transmission when used as mass drug administration (MDA).


2016 ◽  
pp. 517-524 ◽  
Author(s):  
Martin Wegener ◽  
Natalie Balgheim ◽  
Maik Klie ◽  
Carsten Stibbe ◽  
Bernd Holtschulte

KWS SAAT SE and Bayer CropScience AG are jointly developing and commercializing an innovative system of weed control in sugar beet for the global market under the name of CONVISO SMART. The technology is based on the breeding of sugar beet cultivars that are tolerant to herbicides of the ALS-inhibitor-class with a broad-spectrum weed control. This will give farmers a new opportunity to make sugar beet cultivation easier, more flexible in its timing and more efficient. The use of CONVISO, as new herbicide in sugar beet, will make it possible to control major weeds with low dose rates of product and reduced number of applications in the future. The tolerance is based on a change in the enzyme acetholactate synthase, which is involved in the biosynthesis of essential amino acids. This variation can occur spontaneously during cell division. During the development, sugar beets with this spontaneously changed enzyme were specifically selected and used for further breeding of CONVISO SMART cultivars. As such, these varieties are not a product of genetic modification. Field studies with CONVISO SMART hybrids showed complete crop selectivity and a broad and reliable efficacy against a large range of major weeds. The bio-dossier for an EU-wide registration of CONVISO was submitted in April in 2015. The variety inscription process is in preparation in different countries. The system CONVISO SMART is scheduled to be available to farmers in 2018 at the earliest.


Sign in / Sign up

Export Citation Format

Share Document