Planting date affects phenology of London rocket (Sisymbrium irio) and interaction with beet leafhopper (Circulifer tenellus)

Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Jarren Ray ◽  
Jill Schroeder ◽  
Rebecca Creamer ◽  
Leigh Murray

London rocket is a common winter annual weed in southern New Mexico that can host beet curly top virus and its insect vector, the beet leafhopper. Experiments were conducted in southern New Mexico to determine if London rocket could serve as a host for overwintering beet leafhopper. Field experiments were carried out from 2002 to 2003 and from 2003 to 2004 to compare the impact of three London rocket planting dates on plant emergence and life history and leafhopper survival. Emergence was highest in October-planted London rocket, low in January/February plantings, and did not occur for August plantings. The life cycle was 185 d and 125 d for October- and January-planted London rocket, respectively, and growth of the plant (including height and rosette base diameter) was greater for London rocket that was planted in October. October-planted London rocket survived from late October through mid to late April, the period of time needed to serve as an overwintering host for beet leafhoppers. Caging the plants to assess beet leafhopper survival did not affect rate of plant growth, but it reduced the time to flowering for October-planted London rocket and increased the height and weight of plants. Beet leafhoppers were able to survive for approximately 2 mo in early winter or spring on caged London rocket plants.

2020 ◽  
Vol 21 (1) ◽  
pp. 71-76
Author(s):  
Erik Lehnhoff ◽  
Rebecca Creamer

Curly top is an important widespread disease in semiarid regions that can be caused by several Curtovirus and Becurtovirus species. The strains of beet curly top virus (BCTV) have been some of the most widely reported to be associated with curly top. The viruses causing curly top are phloem limited and transmitted by the beet leafhopper (BLH), Circulifer tenellus Baker (Hemiptera: Cicadellidae). The BLH can also transmit other important pathogens such as phytoplasmas. Both the virus and insect vector have a broad host range of crops and weeds, including the winter annual weed London rocket (Sisymbrium irio L.). Prior prediction of disease would allow growers a window of opportunity to make informed management choices. A prediction model of BLH abundance was developed for southern New Mexico based on fall precipitation, which corresponds with London rocket emergence, and BLH sticky trap catch data for 2001 to 2018. Regression analyses showed positive associations between BLH numbers and October + November rainfall (P < 0.001) for two areas within southern New Mexico. A third area, where good weed management was used, had lower BLH numbers, and the relationship with precipitation was not significant (P = 0.190). Cumulative-season BLH abundance was correlated with BLH abundance in late April (r = 0.43) and late May (r = 0.56), indicating that early season knowledge of BLH abundance is useful for planning later season management. Although models based on October + November precipitation are good predictors of BLH abundance through June, they may not predict year-long BLH abundance because other environmental and biological factors contribute to subsequent BLH success and movement.


2019 ◽  
Vol 112 (6) ◽  
pp. 2731-2736 ◽  
Author(s):  
Nicholas J Seiter ◽  
Anne D Miskelley ◽  
Gus M Lorenz ◽  
Neelendra K Joshi ◽  
Glenn E Studebaker ◽  
...  

Abstract The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), has become a major pest of grain sorghum, Sorghum bicolor (L.) Moench, in the United States in recent years. Feeding by large densities of sugarcane aphids causes severe damage, which can lead to a total loss of yield in extreme cases. Our objective was to determine the effect of grain sorghum planting date on sugarcane aphid population dynamics and their potential to reduce yields. We conducted field experiments from 2015 to 2017 in which an aphid-susceptible grain sorghum hybrid was planted at four different dates, which encompassed the typical range of planting dates used in Arkansas production systems. Plots were either protected from sugarcane aphid feeding using foliar insecticide sprays, or left untreated to allow natural populations of sugarcane aphids to colonize and reproduce freely. Planting date impacted both the magnitude and severity of sugarcane aphid infestations, with the highest population densities (and subsequent reductions in sorghum yield) generally occurring on plots that were planted in May or June. Sugarcane aphid feeding reduced yields in the untreated plots in two of the four planting date categories we tested. Earlier planting generally resulted in less sugarcane aphid damage and improved yields compared with later planting dates. While the effect of planting date on sugarcane aphid populations is likely to vary by region, sorghum producers should consider grain sorghum planting date as a potential cultural tactic to reduce the impact of sugarcane aphid.


Plant Disease ◽  
1999 ◽  
Vol 83 (4) ◽  
pp. 351-355 ◽  
Author(s):  
Heping Wang ◽  
P. de A. Gurusinghe ◽  
Bryce W. Falk

Greenhouse and field studies were conducted to assess the effects of systemic insecticides and plant age on beet curly top virus (BCTV) transmission to sugar beet, tomato, pepper, melon, and cowpea. Sugar beets were the most susceptible to BCTV infection. For all BCTV-susceptible plants tested, younger plants showed greater susceptibility to infection than did older plants, even when inoculations were delayed by only 1 week. Systemic insecticides applied to test plants resulted in increased beet leafhopper (Circulifer tenellus) mortality and decreased the percent BCTV transmission. Soil treatment with imidacloprid (250 g a.i./ha) gave significantly better reductions in BCTV transmission than did dimethoate foliar sprays (280 g a.i./ha). These data suggest that the use of specific systemic insecticides only when crop plants are most susceptible to BCTV infection could be an effective alternative component of the curly top disease control program.


Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1586-1590 ◽  
Author(s):  
Silvia I. Rondon ◽  
Mary Sue Roster ◽  
Launa L. Hamlin ◽  
Kelsie J. Green ◽  
Alexander V. Karasev ◽  
...  

The beet leafhopper, Circulifer tenellus, is an agriculturally important pest, particularly in the western United States. This insect transmits the Beet curly top virus (BCTV) to multiple crops, including bean, tomato, and pepper. In this study, we investigated the incidence of BCTV in individual leafhoppers collected at several sites in northeastern Oregon during the growing season in 2007, 2008, and 2009. Of the 800 insects tested, 151 (18.9%) were found positive for the virus. Percentage of virus incidence varied from 0% at one location in 2009 to a high of 55.6% for a location sampled in 2008. The complete virus genomes from one virus-positive insect collected in each of the 3 years were determined. BLAST analysis of the BCTV whole-genome sequences from 2007, 2008, and 2009 insects showed 98, 94, and 96% identities with the BCTV-Worland sequence (AY134867), respectively. The BCTV_2008 sequence showed the greatest identity (96%) with another BCTV genomic sequence (JN817383), and was found to be a recombinant between the BCTV-Worland type, representing the majority of the genome (approximately 2.2 kb), and the BCTV-CFH type that provided an approximately 0.8-kb fragment spanning replication-related genes C1 and C2. This area of the BCTV genome, between the C1 and C2 genes, was previously found to carry symptom determinants of the virus, and the data may suggest more severe effects of BCTV during the 2008 season. Results indicate that BCTV is common and widespread in C. tenellus in eastern Oregon and that there is substantial genetic diversity among the virus strains present in this important field and vegetable crop-growing region.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 596
Author(s):  
Nick R. Bateman ◽  
Angus L. Catchot ◽  
Jeff Gore ◽  
Don R. Cook ◽  
Fred R. Musser ◽  
...  

As fluctuating commodity prices change the agriculture landscape on a yearly basis, soybean (Glycine max (L.) Merr.) has become the predominant crop in the southern USA, accounting for 65 percent of the total row crop production in the state. To accommodate increased soybean production, planting dates have expanded, spanning from late March through July. To determine the impact of this expanded planting window on soybean development and yield, field experiments were conducted at Starkville and Stoneville, MS, in 2013 and 2014. Treatments included seven planting dates ranging from 25 March to 15 July and two soybean cultivars (one Maturity Group IV and one Maturity Group V cultivar). These studies were conducted in irrigated high––yielding environments. Experimental units were sampled weekly for insect pests and insecticides were applied when populations exceeded the levels at which applications were recommended. Planting date had a significant impact on crop development, plant height, canopy closure, and yield. As planting date was delayed, the time required for crop development decreased from 122 total days for plantings on 25 March to 83 days for plantings on 15 July. For plantings after 2 June, plant height decreased by 1.1 cm per day. Canopy closure decreased by 1.01% per day after 27 May. Soybean yield decreased 26.7 kg/ha per day when soybean was planted after 20 April. This research demonstrates the importance of early planting dates for soybean producers in the southern US to ensure profitability by maximizing yield potential.


HortScience ◽  
2003 ◽  
Vol 38 (3) ◽  
pp. 357-360 ◽  
Author(s):  
Robert F. Bevacqua ◽  
Dawn M. VanLeeuwen

Chile pepper (Capsicum annuum L.) yields are highly variable and are strongly influenced by disease and weather. The goal of two field experiments was to evaluate crop management factors, especially planting date, that could contribute to improved and more consistent crop production. Current practice in New Mexico is to direct seed the crop from 13 to 27 Mar. In the first experiment, chile pepper was direct seeded on three planting dates, 13, 20, and 27 Mar. 2000, without or with a fungicide treatment of pentachloronitrobenzene and mefenoxam for the control of damping off. The results indicate planting date had no effect on stand establishment or yield. Fungicide treatment, significantly reduced stand, but had no effect on yield. In the second experiment, chile pepper was direct seeded on six planting dates, 13, 20, 27 Mar. and 3, 10, 17, Apr. 2001, with or without an application of phosphorus fertilizer, P at 29.4 kg·ha-1, banded beneath the seed row. During the growing season, this experimental planting suffered, as did commercial plantings in New Mexico, from high mortality and stunting due to beet curly top virus, a disease transmitted by the beet leafhopper. The results indicate planting date had a significant effect on crop performance. The best stand establishment and highest yield were associated with the earliest planting date, 13 Mar. This date also resulted in the least viral disease damage. Phosphorus fertilizer had no effect on stand establishment or yield. Chemical names used: pentachloronitrobenzene (PCNB); (R)-2-[(2,6-dimethylphenyl)-methoxyacetylamino]-propionic acid methyl ester (mefenoxam).


2016 ◽  
Vol 53 (2) ◽  
pp. 202-209 ◽  
Author(s):  
ROMAIN LOISON ◽  
ALAIN AUDEBERT ◽  
JEAN-LOUIS CHOPART ◽  
PHILIPPE DEBAEKE ◽  
DOMINIQUE DESSAUW ◽  
...  

SUMMARYSeed cotton yield in Northern Cameroon has been declining since the 80s despite breeding efforts. In order to evaluate the impact of genetic improvement on this decline, we conducted field experiments in two locations with 10 widely grown cotton cultivars released in Cameroon between 1950 and 2009. The rate of genetic gain (GG) was estimated with a linear regression of the cultivar mean on its year of release (YR). Contrasts between rates of GG observed with different planting dates were estimated and tested. Our results revealed a rate of GG on fibre yield of 3.3 kg ha−1 year−1 due to increased ginning out-turn (3.9% and 6.2% in 60 years in Garoua and Maroua, respectively). There was no GG on leaf area index (LAI), radiation use efficiency (RUE), aerial biomass, harvest index and on seed cotton yield. We concluded that cotton breeding efforts in Cameroon have successfully improved cotton fibre yield but there is still some room for seed cotton yield improvement.


2010 ◽  
Vol 35 (3) ◽  
pp. 241-250 ◽  
Author(s):  
Andrinae Hudson ◽  
David B. Richman ◽  
Ismael Escobar ◽  
Rebecca Creamer

Sign in / Sign up

Export Citation Format

Share Document