CONVISO® SMART – an innovative approach of weed control in sugar beet

2016 ◽  
pp. 517-524 ◽  
Author(s):  
Martin Wegener ◽  
Natalie Balgheim ◽  
Maik Klie ◽  
Carsten Stibbe ◽  
Bernd Holtschulte

KWS SAAT SE and Bayer CropScience AG are jointly developing and commercializing an innovative system of weed control in sugar beet for the global market under the name of CONVISO SMART. The technology is based on the breeding of sugar beet cultivars that are tolerant to herbicides of the ALS-inhibitor-class with a broad-spectrum weed control. This will give farmers a new opportunity to make sugar beet cultivation easier, more flexible in its timing and more efficient. The use of CONVISO, as new herbicide in sugar beet, will make it possible to control major weeds with low dose rates of product and reduced number of applications in the future. The tolerance is based on a change in the enzyme acetholactate synthase, which is involved in the biosynthesis of essential amino acids. This variation can occur spontaneously during cell division. During the development, sugar beets with this spontaneously changed enzyme were specifically selected and used for further breeding of CONVISO SMART cultivars. As such, these varieties are not a product of genetic modification. Field studies with CONVISO SMART hybrids showed complete crop selectivity and a broad and reliable efficacy against a large range of major weeds. The bio-dossier for an EU-wide registration of CONVISO was submitted in April in 2015. The variety inscription process is in preparation in different countries. The system CONVISO SMART is scheduled to be available to farmers in 2018 at the earliest.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1517
Author(s):  
Jannis Machleb ◽  
Gerassimos G. Peteinatos ◽  
Markus Sökefeld ◽  
Roland Gerhards

The need for herbicide usage reduction and the increased interest in mechanical weed control has prompted greater attention to the development of agricultural robots for autonomous weeding in the past years. This also requires the development of suitable mechanical weeding tools. Therefore, we devised a new weeding tool for agricultural robots to perform intrarow mechanical weed control in sugar beets. A conventional finger weeder was modified and equipped with an electric motor. This allowed the rotational movement of the finger weeders independent of the forward travel speed of the tool carrier. The new tool was tested in combination with a bi-spectral camera in a two-year field trial. The camera was used to identify crop plants in the intrarow area. A controller regulated the speed of the motorized finger weeders, realizing two different setups. At the location of a sugar beet plant, the rotational speed was equal to the driving speed of the tractor. Between two sugar beet plants, the rotational speed was either increased by 40% or decreased by 40%. The intrarow weed control efficacy of this new system ranged from 87% to 91% in 2017 and from 91% to 94% in 2018. The sugar beet yields were not adversely affected by the mechanical treatments compared to the conventional herbicide application. The motorized finger weeders present an effective system for selective intrarow mechanical weeding. Certainly, mechanical weeding involves the risk of high weed infestations if the treatments are not applied properly and in a timely manner regardless of whether sensor technology is used or not. However, due to the increasing herbicide resistances and the continuing bans on herbicides, mechanical weeding strategies must be investigated further. The mechanical weeding system of the present study can contribute to the reduction of herbicide use in sugar beets and other wide row crops.


Author(s):  
В. М. Смірних ◽  
М. В. Тищенко ◽  
С. В. Філоненко ◽  
В. В. Ляшенко ◽  
М. М. Нікітін

Наведено результати досліджень впливу регулятора росту рослин «Грейнактив-С», що застосовується для передпосадкової обробки садивних коренеплодів цукрових буряків, на процеси формування насіннєвої продуктивності висадків та посівні якості гібридного бурякового насіння, а також на розвиток морфологічних елементів насіннєвих рослин. У результаті польових досліджень було встановлено, що обробка садивних коренеплодів цукрових буряків регулятором росту рослин «Грейнактив-С» за 12 годин до їх висаджування сприяє кращому відростанню висадків і збільшенню їх висоти, порівняно з контролем, на 8,0 і 28,7% відповідно. Ураження рослин висадків буряків мозаїкою і некрозом судин листя на ділянках із «Грейнактивом-С» виявилось у 1,41 і 1,52 рази, відповідно, меншим порівняно з варіантом, де коренеплоди не оброблялись цим препаратом. Застосування «Грейнактиву-С» для обробки садивних коренеплодів перед їх висаджуванням сприяло зменшенню у 2 рази кількості насінників цукрових буряків, заселених листковою буряковою попелицею. Препарат «Грейнактив-С», що застосовувався для обробки садивних коренеплодів, сприяв збільшенню врожайності гібридного насіння буряків на 11,5 %, маси 1000 плодів – на 14,0 %. На 5-й день кількість схожого насіння в термостаті на відповідному варіанті виявилася на 10 % більшою, ніж на контролі, а ростковість – у 1,3 рази більшою, ніж на контрольному варіанті. To solve the problem of increasing the seed productivity of sugar beet deforestation, and, having low costs for their cultivation, it is possible not only by genetic selection methods, the application of mineral fertilizers and pesticides, but also by means of growth regulators of plants that become integral elements of intensive technology growing this crop. All this testifies to the relevance of the study of the influence of the growth regulator of plants «Grainaktiv-S», which was used for the processing of seedy root crops of sugar beet, on the processes of growth and development of planting of plants, as well as on the seed quality of the hybrid beet seed. As a result of field studies, it was found that the treatment of sugar beet seedy root crops 12 hours prior to their planting by the growth regulator «Grainaktiv-S» contributes to a better growth of landings and an increase in their height compared with control of 8.0 and 28.7 %, respectively. The damage to beet plants by mosaic and necrosis of leaf vessels on sites with «Grainactiv-C» was 1.41 and 1.52 times lower, respectively, compared to the variant where the root crops were not treated with this drug. The number of seeds of sugar beets populated with leafy beetroot aphids was 2 times lower in the variant where «Grainaktiv-S» was used for processing root crops before planting. The drug «Grainaktiv-S», used to treat the planting root crops, contributed to an increase in the yield of hybrid beet seeds by 11.5 %, and a weight of 1000 fruits – by 14.0 %. On day 5, the number of similar seeds in the thermostat in the corresponding variant was 10 % higher than that of the control, and germination in the same variant under the conditions of the thermostat on the 5th day was 1.3 times higher than in the control version.


2004 ◽  
Vol 18 (4) ◽  
pp. 968-976 ◽  
Author(s):  
Farzin Abdollahi ◽  
Hossein Ghadiri

Field studies were conducted to investigate the effects of different rates of herbicides on weed control, agronomic characteristics, and quality of sugar beet at Shiraz, Iran, in 2000 and 2001. Separate and combined applications of herbicides, including 14 combinations and different rates of grass and broadleaf herbicides, at two rates were used. Herbicides reduced weed biomass compared with the weedy check. In both years, maximum reduction in weed biomass was observed with desmedipham plus phenmedipham plus ethofumesate at 0.23 + 0.23 + 0.23 kg ai/ha and desmedipham plus phenmedipham plus propaquizafop at 0.46 + 0.46 + 0.1 kg ai/ha. Efficacy of grass herbicides was reduced when they were combined with pyrazon. Highest crop injury in both years was observed with desmedipham plus phenmedipham plus ethofumesate at 0.23 + 0.23 + 0.23 kg/ ha. Highest and lowest root yields in both years were produced in weed-free and weedy check plots, respectively. All herbicide treatments produced lower sugar beet yields than the hand-weeded check. Of the herbicide treatments evaluated, the highest sugar beet yields were with desmedipham plus phenmedipham plus propaquizafop at 0.46 + 0.46 + 0.1 kg/ha in 2001 and with desmedipham plus phenmedipham plus ethofumesate at 0.23 + 0.23 + 0.23 kg/ha in 2000. Sucrose content and other sugar beet brei characteristics were not affected by the herbicide treatments.


2016 ◽  
Author(s):  
Moritz Jasper Wendt ◽  
Christine Kenter ◽  
Martin Wegener ◽  
Bernward Märländer

2014 ◽  
pp. 228-231 ◽  
Author(s):  
Maciej Wojtczak ◽  
Aneta Antczak-Chrobot ◽  
Edyta Chmal-Fudali ◽  
Agnieszka Papiewska

The aim of the study is to evaluate the kinetics of the synthesis of dextran and other bacterial metabolites as markers of microbiological contamination of sugar beet.


2021 ◽  
pp. 1-18
Author(s):  
Levi D. Moore ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Ramon G. Leon ◽  
David L. Jordan ◽  
...  

Abstract Field studies were conducted to evaluate linuron for POST control of Palmer amaranth in sweetpotato to minimize reliance on protoporphyrinogen oxidase (PPO)-inhibiting herbicides. Treatments were arranged in a two by four factorial where the first factor consisted of two rates of linuron (420 and 700 g ai ha−1), and the second factor consisted of linuron applied alone or in combinations of linuron plus a nonionic surfactant (NIS) (0.5% v/v), linuron plus S-metolachlor (800 g ai ha−1), or linuron plus NIS plus S-metolachlor. In addition, S-metolachlor alone and nontreated weedy and weed-free checks were included for comparison. Treatments were applied to ‘Covington’ sweetpotato 8 d after transplanting (DAP). S-metolachlor alone provided poor Palmer amaranth control because emergence had occurred at applications. All treatments that included linuron resulted in at least 98 and 91% Palmer amaranth control 1 and 2 wk after treatment (WAT), respectively. Including NIS with linuron did not increase Palmer amaranth control compared to linuron alone, but increased sweetpotato injury and subsequently decreased total sweetpotato yield by 25%. Including S-metolachlor with linuron resulted in the greatest Palmer amaranth control 4 WAT, but increased crop foliar injury to 36% 1 WAT compared to 17% foliar injury from linuron alone. Marketable and total sweetpotato yield was similar between linuron alone and linuron plus S-metolachlor or S-metolachlor plus NIS treatments, though all treatments resulted in at least 39% less total yield than the weed-free check resulting from herbicide injury and/or Palmer amaranth competition. Because of the excellent POST Palmer amaranth control from linuron 1 WAT, a system including linuron applied 7 DAP followed by S-metolachlor applied 14 DAP could help to extend residual Palmer amaranth control further into the critical period of weed control while minimizing sweetpotato injury.


2021 ◽  
pp. 1-22
Author(s):  
Marcelo L. Moretti

Abstract Italian ryegrass has become a problematic weed in hazelnut orchards of Oregon because of the presence of herbicide-resistant populations. Resistant and multiple-resistant Italian ryegrass populations are now the predominant biotypes in Oregon; there is no information on which herbicides effectively control Italian ryegrass in hazelnut orchards. Six field studies were conducted in commercial orchards to evaluate Italian ryegrass control with POST herbicides. Treatments included flazasulfuron, glufosinate, glyphosate, paraquat, rimsulfuron, and sethoxydim applied alone or in selected mixtures during early spring when plants were in the vegetative stage. Treatment efficacy was dependent on the experimental site. The observed range of weed control 28 d after treatment was 13 to 76 % for glyphosate, 1 to 72% for paraquat, 58 to 88% for glufosinate, 16 to 97 % for flazasulfuron, 8 to 94% for rimsulfuron, and 25 to 91% for sethoxydim. Herbicides in mixtures improved control of Italian ryegrass compared to single active ingredients based on contrast analysis. Herbicides in mixture increased control by 27% compared to glyphosate, 18% to rimsulfuron, 15% to flazasulfuron, 19% to sethoxydim, and 12% compared to glufosinate when averaged across all sites, but mixture not always improved ground coverage of biomass reduction. This complex site-specific response highlights the importance of record-keeping for efficient herbicide use. Glufosinate is an effective option to manage Italian ryegrass. However, the glufosinate-resistant biotypes documented in Oregon may jeopardize this practice. Non-chemical weed control options are needed for sustainable weed management in hazelnuts.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2019 ◽  
Vol 34 (4) ◽  
pp. 498-505
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

AbstractRice with enhanced tolerance to herbicides that inhibit acetyl coA carboxylase (ACCase) allows POST application of quizalofop, an ACCase-inhibiting herbicide. Two concurrent field studies were conducted in 2017 and 2018 near Stoneville, MS, to evaluate control of grass (Grass Study) and broadleaf (Broadleaf Study) weeds with sequential applications of quizalofop alone and in mixtures with auxinic herbicides applied in the first or second application. Sequential treatments of quizalofop were applied at 119 g ai ha−1 alone and in mixtures with labeled rates of auxinic herbicides to rice at the two- to three-leaf (EPOST) or four-leaf to one-tiller (LPOST) growth stages. In the Grass Study, no differences in rice injury or control of volunteer rice (‘CL151’ and ‘Rex’) were detected 14 and 28 d after last application (DA-LPOST). Barnyardgrass control at 14 and 28 DA-LPOST with quizalofop applied alone or with auxinic herbicides EPOST was ≥93% for all auxinic herbicide treatments except penoxsulam plus triclopyr. Barnyardgrass control was ≥96% with quizalofop applied alone and with auxinic herbicides LPOST. In the Broadleaf Study, quizalofop plus florpyrauxifen-benzyl controlled more Palmer amaranth 14 DA-LPOST than other mixtures with auxinic herbicides, and control with this treatment was greater EPOST compared with LPOST. Hemp sesbania control 14 DA-LPOST was ≤90% with quizalofop plus quinclorac LPOST, orthosulfamuron plus quinclorac LPOST, and triclopyr EPOST or LPOST. All mixtures except quinclorac and orthosulfamuron plus quinclorac LPOST controlled ivyleaf morningglory ≥91% 14 DA-LPOST. Florpyrauxifen-benzyl or triclopyr were required for volunteer soybean control >63% 14 DA-LPOST. To optimize barnyardgrass control and rice yield, penoxsulam plus triclopyr and orthosulfamuron plus quinclorac should not be mixed with quizalofop. Quizalofop mixtures with auxinic herbicides are safe and effective for controlling barnyardgrass, volunteer rice, and broadleaf weeds in ACCase-resistant rice, and the choice of herbicide mixture could be adjusted based on weed spectrum in the treated field.


1999 ◽  
Vol 59 (3) ◽  
pp. 283-299 ◽  
Author(s):  
A.J de Buck ◽  
H.B Schoorlemmer ◽  
G.A.A Wossink ◽  
S.R.M Janssens

Sign in / Sign up

Export Citation Format

Share Document