scholarly journals First Report of East African Cassava Mosaic Begomovirus in Ghana

Plant Disease ◽  
1999 ◽  
Vol 83 (9) ◽  
pp. 877-877 ◽  
Author(s):  
S. K. Offei ◽  
M. Owuna-Kwakye ◽  
G. Thottappilly

Virus species causing cassava mosaic disease have been categorized into three classes based on their reaction with monoclonal antibodies (MAbs) and their distribution (2). These viruses have different, scarcely overlapping distribution: African cassava mosaic begomovirus (ACMV) occurs in Africa west of the Rift Valley and in South Africa; East African cassava mosaic (EACMV) occurs in Africa east of the Rift Valley and in Madagascar; and Indian cassava mosaic virus (ICMV) occurs in India and Sri Lanka (2). During 1998, surveys were conducted in farmers' fields in Ghana to assess the incidence and reaction of local cassava cultivars to cassava mosaic disease. Leaf samples from symptomatic plants were indexed by triple antibody sandwich-enzyme-linked immunosorbent assay with crude extracts and monoclonal antibodies obtained from the International Institute of Tropical Agriculture (IITA). Each sample was assayed with monoclonal antibody SCR 23, which detects ACMV and EACMV, SCR 33, which detects ACMV, and SCR 58, which detects ICMV. None of the samples reacted with SCR 58. Two of the samples collected from the western region of Ghana produced strong reactions with MAb SCR23 but did not react with ACMV-specific MAb SCR 33. This result was consistent in three separate experiments conducted on the samples, confirming that the virus was EACMV and not ACMV. The results extend the work by Ogbe et al. (1) and provide further evidence of the occurrence of EACMV in west Africa. References: (1) F. O. Ogbe et al. Plant Dis 83:398, 1999. (2) M. M. Swanson and B. D. Harrison. Trop. Sci. 34:15, 1994.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Saengsoon Charoenvilaisiri ◽  
Channarong Seepiban ◽  
Mallika Kumpoosiri ◽  
Sombat Rukpratanporn ◽  
Nuchnard Warin ◽  
...  

Abstract Background Cassava mosaic disease (CMD) is one of the most devastating viral diseases for cassava production in Africa and Asia. Accurate yet affordable diagnostics are one of the fundamental tools supporting successful CMD management, especially in developing countries. This study aimed to develop an antibody-based immunoassay for the detection of Sri Lankan cassava mosaic virus (SLCMV), the only cassava mosaic begomovirus currently causing CMD outbreaks in Southeast Asia (SEA). Methods Monoclonal antibodies (MAbs) against the recombinant coat protein of SLCMV were generated using hybridoma technology. MAbs were characterized and used to develop a triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) for SLCMV detection in cassava leaves and stems. Assay specificity, sensitivity and efficiency for SLCMV detection was investigated and compared to those of a commercial ELISA test kit and PCR, the gold standard. Results A TAS-ELISA for SLCMV detection was successfully developed using the newly established MAb 29B3 and an in-house polyclonal antibody (PAb) against begomoviruses, PAb PK. The assay was able to detect SLCMV in leaves, green bark from cassava stem tips, and young leaf sprouts from stem cuttings of SLCMV-infected cassava plants without cross-reactivity to those derived from healthy cassava controls. Sensitivity comparison using serial dilutions of SLCMV-infected cassava sap extracts revealed that the assay was 256-fold more sensitive than a commercial TAS-ELISA kit and 64-fold less sensitive than PCR using previously published SLCMV-specific primers. In terms of DNA content, our assay demonstrated a limit of detection of 2.21 to 4.08 × 106 virus copies as determined by quantitative real-time PCR (qPCR). When applied to field samples (n = 490), the TAS-ELISA showed high accuracy (99.6%), specificity (100%), and sensitivity (98.2%) relative to the results obtained by the reference PCR. SLCMV infecting chaya (Cnidoscolus aconitifolius) and coral plant (Jatropha multifida) was also reported for the first time in SEA. Conclusions Our findings suggest that the TAS-ELISA for SLCMV detection developed in this study can serve as an attractive tool for efficient, inexpensive and high-throughput detection of SLCMV and can be applied to CMD screening of cassava stem cuttings, large-scale surveillance, and screening for resistance.


Plant Disease ◽  
1999 ◽  
Vol 83 (4) ◽  
pp. 398-398 ◽  
Author(s):  
F. O. Ogbe ◽  
G. I. Atiri ◽  
D. Robinson ◽  
S. Winter ◽  
A. G. O. Dixon ◽  
...  

Cassava (Manihot esculenta Crantz) is an important food crop in sub-Saharan Africa. One of the major production constraints is cassava mosaic disease caused by African cassava mosaic (ACMV) and East African cassava mosaic (EACMV) begomoviruses. ACMV is widespread in its distribution, occurring throughout West and Central Africa and in some eastern and southern African countries. In contrast, EACMV has been reported to occur mainly in more easterly areas, particularly in coastal Kenya and Tanzania, Malawi, and Madagascar. In 1997, a survey was conducted in Nigeria to determine the distribution of ACMV and its strains. Samples from 225 cassava plants showing mosaic symptoms were tested with ACMV monoclonal antibodies (MAbs) in triple antibody sandwich enzyme-linked immunosorbent assay (1). Three samples reacted strongly with MAbs that could detect both ACMV and EACMV. One of them did not react with ACMV-specific MAbs while the other two reacted weakly with such MAbs. With polymerase chain reaction (2), the presence of EACMV and a mixture of EACMV and ACMV in the respective samples was confirmed. These samples were collected from two villages: Ogbena in Kwara State and Akamkpa in Cross River State. Co-infection of some cassava varieties with ACMV and EACMV leads to severe symptoms. More importantly, a strain of mosaic geminivirus known as Uganda variant arose from recombination between the two viruses (2). This report provides evidence for the presence of EACMV in West Africa. References: (1) J. E. Thomas et al. J. Gen. Virol. 67:2739, 1986. (2) X. Zhou et al. J. Gen. Virol. 78:2101, 1997.


Plant Disease ◽  
2003 ◽  
Vol 87 (3) ◽  
pp. 229-232 ◽  
Author(s):  
F. O. Ogbe ◽  
G. Thottappilly ◽  
A. G. O. Dixon ◽  
G. I. Atiri ◽  
H. D. Mignouna

In a survey for cassava mosaic begomoviruses conducted in 1997 and 1998 in Nigeria, East African cassava mosaic virus (EACMV) was detected by the polymerase chain reaction together with African cassava mosaic virus (ACMV) in 27 out of 290 cassava leaf samples of infected plants from 254 farmers' fields in five agroecological zones. One plant was infected with EACMV only. Five variant isolates of EACMV were observed based on their reactions to primers that could detect Cameroonian and East African strains of EACMV. Isolates of variants 1 and 3 occurred mostly in the derived or coastal and southern Guinea savannahs, while variants 4 and 5 predominated in the humid forest region. Isolates of variant 2 were widely distributed across the three agroecologies. EACMV was not detected in the northern Guinea savannah and arid and semiarid zones. Most doubly infected plants showed more severe symptoms than plants with single infection. Occurrence of EACMV variants together with ACMV detection and information about their distribution in Nigeria could be used for the selection of cassava clones in cassava mosaic disease resistance programs.


2001 ◽  
Vol 82 (3) ◽  
pp. 655-665 ◽  
Author(s):  
J. S. Pita ◽  
V. N. Fondong ◽  
A. Sangaré ◽  
G. W. Otim-Nape ◽  
S. Ogwal ◽  
...  

The molecular variability of cassava geminiviruses occurring in Uganda was investigated in this study. Infected cassava plants and whiteflies were collected from cassava plantings in different geographical areas of the country and PCR was used for molecular characterization of the viruses. Two complete sequences of DNA-A and -B from African cassava mosaic virus (ACMV), two DNA-A sequences from East African cassava mosaic virus (EACMV), two DNA-B sequences of EACMV and the partial DNA-A nucleotide sequence of a new virus strain isolated in Uganda, EACMV-UG3, are reported here. Analysis of naturally infected cassava plants showed various assortments of DNA-A and DNA-B of the Ugandan viruses, suggesting the occurrence of natural inter- and intraspecies pseudorecombinations and a pattern of cassava mosaic disease (CMD) more complex than previously reported. EACMV-UG2 DNA-A, which contains a recombinant fragment between ACMV and EACMV-UG1 in the coat protein gene that resembles virus from Tanzania, was widespread in the country and always associated with EACMV-UG3 DNA-B, which probably resulted from another natural recombination event. Mixed infections of ACMV-UG and EACMV-UG in cassava and whiteflies were detected in most of the regions where both viruses occurred. These mixed-infected samples always showed extremely severe CMD symptoms, suggesting a synergistic interaction between ACMV-UG and EACMV-UG2. The first demonstration is provided of infectivity of EACMV clones to cassava, proving conclusively that the pseudorecombinant EACMV-UG2 DNA-A+EACMV-UG3 DNA-B is a causal agent of CMD in Uganda.


Plant Disease ◽  
1998 ◽  
Vol 82 (10) ◽  
pp. 1172-1172 ◽  
Author(s):  
V. N. Fondong ◽  
J. S. Pita ◽  
C. Rey ◽  
R. N. Beachy ◽  
C. M. Fauquet

Cassava mosaic disease (CMD) occurs in all cassava-growing regions of Africa, India, and Sri Lanka. Characterized by mosaic and distortion of cassava leaves and reduced plant growth, causing high yield losses, CMD is caused by geminiviruses (genus Begomovirus, family Geminiviridae) transmitted through infected cuttings or by the whitefly, Bemisia tabaci. Three such geminiviruses have been described: African cassava mosaic virus (ACMV) occurs in most of the cassava-producing zones of Africa; East African cassava mosaic virus (EACMV) in East Africa; and Indian cassava mosaic virus (ICMV) in the Indian subcontinent (1). The two components of ACMV and ICMV genomes, DNA-A and DNA-B, have been sequenced; only DNA-A of EACMV has been identified and sequenced. Variations in symptom expression and severity within the same cassava variety have been observed in Cameroon. To determine the nature of the virus species inducing such variations, 50 samples were collected from CMD-infected plants in the savannah and rainforest zones of Cameroon: 2 from the sahel/savannah plain, 13 from the western highland savannah, and 35 from the main cassava-producing belt of the southwestern rainforest. There is a high incidence of CMD in the rainforest region, with some farms completely infected, while in the savannah regions farms generally have less than 25% incidence. Variation in symptom expression was more common in the rainforest region. Samples were collected from plants with distinct symptoms and/or different extents of symptom severity, then analyzed with the polymerase chain reaction (PCR) with specific primers: JSP1, ATG TCG AAG CGA CCA GGA GAT; JSP2, TGT TTA TTA ATT GCC AAT ACT; and JSP3, CCT TTA TTA ATT TGT CAC TGC. Primer JSP1 anneals to the 5′ end of the coat protein (CP) of ACMV and EACMV; primers JSP2 and JSP3 anneal to the 3′ ends of ACMV and EACMV, respectively. Virus identification was based on presence of an amplified fragment of either virus. ACMV was detected in all 50 samples; EACMV was detected in 8. All samples infected with EACMV were from the southwestern rainforest of Cameroon and were more severely affected by the disease than single infected plants. Previous reports have limited occurrence of EACMV to East Africa (1). This is the first report of the occurrence of EACMV in West Africa. The CP gene of three isolates of EACMV from Cameroon (EACMV/CM) was sequenced from cloned PCR products. There was a high CP nucleotide sequence identity (>99%) with only two amino acid differences among all three EACMV isolates. In contrast, there was a rather low sequence identity (94%) with EACMV/TZ from Tanzania (2), suggesting they may belong to a previously undescribed West African strain of EACMV. This indicates the geminiviruses causing CMD in Africa are more widely distributed than previously reported. None of the Cameroon isolates showed the type of recombination of the EACMV isolate from Uganda (EACMV/ UG) (having the CP core segment the identical to the corresponding ACMV CP sequence) (2). This emphasizes the need for characterization of the viruses causing CMD in different cassava-growing regions of Africa since appropriate control strategies depend on adequate knowledge of disease etiology. References: (1) Y. G. Hong et al. J. Gen. Virol. 74:2437, 1993. (2) X. Zhou et al. J. Gen. Virol. 78:2101, 1997.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1379-1387 ◽  
Author(s):  
Rabson M. Mulenga ◽  
James P. Legg ◽  
Joseph Ndunguru ◽  
Douglas W. Miano ◽  
Eunice W. Mutitu ◽  
...  

A survey was conducted from April to May 2014 in 214 farmers’ fields located across six major cassava-producing provinces (Western, Northwestern, Northern, Luapula, Lusaka, and Eastern) of Zambia to determine the status of cassava mosaic disease (CMD) and the species diversity of associated cassava mosaic geminiviruses (CMG). Mean CMD incidence varied across all six provinces but was greatest in Lusaka Province (81%) and least in Northern Province (44%). Mean CMD severity varied slightly between provinces, ranging from 2.78 in Eastern Province to 3.00 in Northwestern Province. Polymerase chain reaction discrimination of 226 survey samples, coupled with complete DNA-A genome sequence analysis, revealed the presence of African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), and East African cassava mosaic Malawi virus (EACMMV) as single or mixed infections of different proportions. Single-virus infections were predominant, occurring in 62.8% (ACMV), 5.8% (EACMMV), and 2.2% (EACMV) of samples relative to mixed-virus infections, which occurred in 19.5% (ACMV + EACMMV), 0.4% (ACMV + EACMV), and 0.9% (ACMV + EACMV + EACMMV) of samples. Phylogenetic analysis revealed the segregation of virus isolates from Zambia into clades specific to ACMV, EACMV, and EACMMV, further confirming the presence of all three viruses in Zambia. The results point to a greater diversity of CMG across major cassava-growing provinces of Zambia and implicate contaminated cassava cuttings in disease spread.


2016 ◽  
Vol 90 (8) ◽  
pp. 4160-4173 ◽  
Author(s):  
Joseph Ndunguru ◽  
Leandro De León ◽  
Catherine D. Doyle ◽  
Peter Sseruwagi ◽  
German Plata ◽  
...  

ABSTRACTCassava mosaic begomoviruses (CMBs) cause cassava mosaic disease (CMD) across Africa and the Indian subcontinent. Like all members of the geminivirus family, CMBs have small, circular single-stranded DNA genomes. We report here the discovery of two novel DNA sequences, designated SEGS-1 and SEGS-2 (forsequencesenhancinggeminivirussymptoms), that enhance symptoms and break resistance to CMD. The SEGS are characterized by GC-rich regions and the absence of long open reading frames. Both SEGS enhanced CMD symptoms in cassava (Manihot esculentaCrantz) when coinoculated withAfrican cassava mosaic virus(ACMV),East African cassava mosaic Cameroon virus(EACMCV), orEast African cassava mosaic virus-Uganda(EACMV-UG). SEGS-1 also overcame resistance of a cassava landrace carrying the CMD2 resistance locus when coinoculated with EACMV-UG. Episomal forms of both SEGS were detected in CMB-infected cassava but not in healthy cassava. SEGS-2 episomes were also found in virions and whiteflies. SEGS-1 has no homology to geminiviruses or their associated satellites, but the cassava genome contains a sequence that is 99% identical to full-length SEGS-1. The cassava genome also includes three sequences with 84 to 89% identity to SEGS-2 that together encompass all of SEGS-2 except for a 52-bp region, which includes the episomal junction and a 26-bp sequence related to alphasatellite replication origins. These results suggest that SEGS-1 is derived from the cassava genome and facilitates CMB infection as an integrated copy and/or an episome, while SEGS-2 was originally from the cassava genome but now is encapsidated into virions and transmitted as an episome by whiteflies.IMPORTANCECassava is a major crop in the developing world, with its production in Africa being second only to maize. CMD is one of the most important diseases of cassava and a serious constraint to production across Africa. CMD2 is a major CMD resistance locus that has been deployed in many cassava cultivars through large-scale breeding programs. In recent years, severe, atypical CMD symptoms have been observed occasionally on resistant cultivars, some of which carry the CMD2 locus, in African fields. In this report, we identified and characterized two DNA sequences, SEGS-1 and SEGS-2, which produce similar symptoms when coinoculated with cassava mosaic begomoviruses onto a susceptible cultivar or a CMD2-resistant landrace. The ability of SEGS-1 to overcome CMD2 resistance and the transmission of SEGS-2 by whiteflies has major implications for the long-term durability of CMD2 resistance and underscore the need for alternative sources of resistance in cassava.


2006 ◽  
Vol 87 (10) ◽  
pp. 3053-3065 ◽  
Author(s):  
Simon E. Bull ◽  
Rob W. Briddon ◽  
William S. Sserubombwe ◽  
Kahiu Ngugi ◽  
Peter G. Markham ◽  
...  

Cassava is a major factor in food security across sub-Saharan Africa. However, the crop is susceptible to losses due to biotic stresses, in particular to viruses of the genus Begomovirus (family Geminiviridae) that cause cassava mosaic disease (CMD). During the 1990s, an epidemic of CMD severely hindered cassava production across eastern and central Africa. A significant influence on the appearance of virus epidemics is virus diversity. Here, a survey of the genetic diversity of CMD-associated begomoviruses across the major cassava-growing areas of Kenya is described. Because an initial PCR-restriction fragment-length polymorphism analysis identified a much greater diversity of viruses than assumed previously, representative members of the population were characterized by sequence analysis. The full-length sequences of 109 components (68 DNA-A and 41 DNA-B) were determined, representing isolates of East African cassava mosaic virus and East African cassava mosaic Zanzibar virus, as well as a novel begomovirus species for which the name East African cassava mosaic Kenya virus is proposed. The DNA-B components were much less diverse than their corresponding DNA-A components, but nonetheless segregated into western and eastern (coastal) groups. All virus species and strains encountered showed distinct geographical distributions, highlighting the importance of preventing both the movement of viruses between these regions and the importation of the disease from adjacent countries and islands in the Indian Ocean that would undoubtedly encourage further diversification.


Plant Disease ◽  
2021 ◽  
Author(s):  
Khonesavane Chittarath ◽  
Jenyfer Jimenez ◽  
Pinkham Vongphachanh ◽  
Ana Maria Leiva ◽  
Somkhit Sengsay ◽  
...  

Cassava (Manihot esculenta Crantz) has been traditionally grown as a subsistence crop in Laos, but in recent years cassava cultivation in this country has expanded and is becoming a ‘cash crop’ for farmers (Malik et al., 2020). This also means that cassava vegetative seed (stakes) is rapidly multiplied and distributed. One of the most important diseases affecting cassava in the world is the Cassava Mosaic Disease (CMD), caused by several species of begomoviruses and disseminated by infected stakes or vectored by the whitefly Bemisia tabaci (Legg et al., 2014). Sri Lankan cassava mosaic virus (SLCMV), a bipartite begomovirus, is the virus species causing CMD in Southeast Asia (SEA) and is widespread in Cambodia, Vietnam, Thailand and south China (Siriwan et al., 2020). During field surveys on July 12 to 14, 2020, the team in south Laos, surveyed 8 fields along the border with Cambodia, in the southern provinces of Attapeu and Champassack and identified CMD symptoms (Supplementary Figure 1A) in only one of the fields, located at Kong District of the Champassack province (GPS coordinates 13.94325, 105.99102). From these 8 fields, samples were collected from every third plant in an X pattern. Photographs from each sampled plant were taken and uploaded into CIAT’s PestDisPlace platform (https://pestdisplace.org), for CMD symptom confirmation (Supplementary Figure 1B). Leaf samples were sent to the laboratory for PCR using primers SLCMV-F 5’-ATGTCGAAGCGACCAGCAGATATAAT-3’ and SLCMV-R 5’-TTAATTGCTGACCGAATCGTAGAAG-3’ targeting the AV1 gene (Dutt et al., 2005), following the protocol described in Siriwan et al. (2020) and primers SLCMV-B-F1 5’-ACCGGATGGCCGCGCCCCCCTCT-3’ and SLCMV-B-606R 5’-CACCTACCCTGTTATCGCTAAG-3’ targeting part of the BV1 gene. Out of 60 samples collected for the field in Kong district, eleven (18.3%) resulted PCR positive to SLCMV (to DNA-A and DNA-B) but only four plants (6.7%) showed symptoms of CMD (see Supplementary Figure 1B and 1C). None of the samples in the other seven fields had CMD symptoms nor was SLCMV detected in any of these plants. Furthermore, the presence of CMD symptoms in the old leaves of the plants in the affected field suggests that the virus was introduced with contaminated stakes. The complete bipartite genome of one isolate (Champ1), was amplified by Rolling Circle Amplification and sequenced with the nanopore MinION technology as described by Leiva et al. (2020). The sequences were submitted to GenBank under accession nos MT946533 (DNA-A) and MT946534 (DNA-B). A phylogenetic tree for SLCMV and a link to the open SLCMV Nextstrain map (Hadfield et al., 2018) is included in Supplementary Figure 2. The sequences of the DNA-A and DNA-B components of the Champ1 isolate were nearly identical to those of anisolate of SLCMV from Ratanakiri, Cambodia (99.72% for DNA-A and 99.82 for DNA-B; Wang et al., 2016). Phylogenetic analysis (Supplementary Figure 2), grouped isolate Champ1 with those that form the cluster of SEA isolates that contain the shorter version of the rep gene (Siriwan et al., 2020). This short version of rep present a deletion of 7 amino acids at the C-terminus, which is involved in host responses to SLCMV (Wang et al., 2020). The confirmation of CMD and SLCMV in the border between Laos and Cambodia should be followed by disease containment and management strategies, particularly given that the majority cassava varieties grown in Laos are from neighbor countries, most of which have already reported the presence of CMD. Acknowledgements We thank all staff from the CIAT’s Cassava Program and the Plant Protection Center of Laos in Vientiane. We acknowledge financial support from the Australian Centre for International Agricultural Research (ACIAR) and the CGIAR Research Program on Roots, Tubers and Bananas (RTB) (https://www.cgiar.org/funders/).


Sign in / Sign up

Export Citation Format

Share Document