scholarly journals Factors Affecting the Transmission and Spread of Sugarcane yellow leaf virus

Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1085-1088 ◽  
Author(s):  
S. Schenck ◽  
A. T. Lehrer

Sugarcane, Saccharum spp. hybrid, is widely infected in the United States and many other countries with a yellowing and stunting disease called sugarcane yellow leaf syndrome. The causal agent, Sugarcane yellow leaf virus (ScYLV), is a Polerovirus of the Luteoviridae family. In this study, it was transmitted by the sugarcane aphid, Melanaphis sacchari, and also by the corn leaf aphid, Rhopalosiphum maidis, and the rice root aphid, R. rufiabdominalis. Two other aphids that infest sugarcane in Hawaii did not transmit the virus. Some Hawaiian sugarcane cultivars are susceptible to ScYLV, while others remain virus-free in the field. The latter were not infected when inoculated with viruliferous M. sacchari. Virus-free plants of susceptible cultivars were produced through apical meristem culture and were readily reinfected by viruliferous M. sacchari. They were also quickly reinfected when planted in a field in proximity to other infected sugarcane naturally infested with M. sacchari. Sugarcane cultivars are hybrids of several Saccharum species. In a field-grown collection of Saccharum and related species, 11 to 71% of the clones of four of the species were infected with ScYLV. None of the related genus Erianthus plants were infected, but four clones were infected experimentally by aphid inoculation. A low to moderate percentage of corn, rice, and sorghum seedlings became infected when inoculated with ScYLV, but barley, oats, and wheat proved to be very susceptible. None of seven weeds common in sugarcane fields were infected with ScYLV.

Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1016-1016 ◽  
Author(s):  
M. Bouallegue ◽  
M. Mezghani-Khemakhem ◽  
H. Makni ◽  
M. Makni

Sugarcane yellow leaf virus (ScYLV) causes severe leaf symptoms in sugarcane (Saccharum spp.). It is a single-stranded RNA virus assigned to the genus Polerovirus, family Luteoviridae (1). ScYLV is transmitted by two aphid species, Melanaphis sacchari and Rhopalosiphum maidis. Although barley (Hordeum vulgare), oats (Avena sativa), and wheat (Triticum spp.) are susceptible to ScYLV when experimentally inoculated (3), this virus, related serologically to Barley yellow dwarf virus (BYDV)-RPV (4), has never been detected naturally in these cereals. In this study, 240 barley leaves were randomly collected from six fields in Tunisia following a north-south trend during the high infestation periods (March/April) in the 2013 growing season. Samples were tested by DAS-ELISA, using three antibodies (Bioreba AG, Switzerland), two of them, BYDV-B and BYDV-F, specific to luteoviruses corresponding to BYDV-PAV and BYDV-MAV, respectively, and the third one, BYDV-RPV, specific to the polerovirus synonymous to Cereal yellow dwarf virus (CYDV)-RPV. Based on DAS-ELISA, 30 samples were found positive for B/CYDV infection; 17 out of the 30 infected samples contained a single serotype, BYDV-PAV, and 13 out of the 30 infected samples contained two serotypes, PAV and RPV. Total RNA was extracted from all positive samples, and RT-PCR of the viral CP gene was performed with Lu1/Lu4 primers (2). A product of 531 bp was cloned and sequenced. The identities among the sequences determined varied between 80 to 100%, and from the 17 samples containing BYDV-PAV, six distinct BYDV-PAV sequences were revealed and named PAV-TN1 to PAV-TN6 (GenBank Accession No. JX402453 to JX402457 and KF271792). Fortuitously, all 13 positive samples corresponding to the serotypes PAV-RPV exhibited 98.7 to 99.3% identity with ScYLV isolates. These 13 samples contained three distinct sequences that were named ScYLV-Tun1 to ScYLV-Tun3 (GenBank Accession No. KF836888 to KF836890). Of the 17 PAV-positive samples collected, six were infected with PAV-TN1, four with PAV-TN2, four with PAV-TN3, one with PAV-TN4, one with PAV-TN5, and the last one with PAV-TN6. Of the 13 ScYLV-positive samples, seven were infected with ScYLV-Tun1, four with ScYLV-Tun2, and two with ScYLV-Tun3. Phylogenetic analysis showed that PAV-TN sequences formed a very tight cluster (>98%) corresponding to BYDV subspecies PAV-II, whereas all three Tunisian ScYLV sequences were clustered together. This study provides the first report of ScYLV isolates infecting barley crops in Tunisia, and confirms serological cross-reactivity between ScYLV and BYDV-RPV when commercial antibodies against BYDV-RPV are used. References: (1) C. J. D'Arcy and L. L. Domier. Page 891 in: Virus Taxonomy, 8th Report of the ICTV. C. M. Fauquet et al., eds. Springer-Verlag, New York, 2005. (2) N. L. Robertson and R. French. J. Gen. Virol. 72:1473, 1991. (3) S. Schenck and A. T. Lehrer. Plant Dis. 84:1085, 2000. (4) J. Vega et al. Plant Dis. 81:21, 1997.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 607-615 ◽  
Author(s):  
C. D. McAllister ◽  
J. W. Hoy ◽  
T. E. Reagan

Yellow leaf, caused by Sugarcane yellow leaf virus (ScYLV), is a potentially important disease of sugarcane first found in Louisiana during 1996. A survey during 2002 determined that ScYLV infection was present in all sugarcane-production areas of Louisiana. Virus was detected in 48% of 42 fields, and incidence averaged 15% in these fields. Disease progress curves determined in four fields during two growing seasons indicated that the greatest temporal increase of virus infection occurred during late spring and early summer and coincided with the initial infestation and increase of the virus vector, the sugarcane aphid (Melanaphis sacchari). Aphid infestations in the experimental fields during 2002 and 2003 ranged from 1.2 to 33.0 and 1.0 to 4.2 aphids per leaf, respectively. Final disease incidences of 2.9, 5.2, and 5.2% were recorded in three fields planted with virus-free seed-cane. Distribution of ScYLV infections and aphids evaluated with spatial autocorrelation analysis indicated that ScYLV and its aphid vector both exhibited a predominantly random spatial distribution, with occasional aggregation. The low incidence and rates of disease increase observed, despite the widespread occurrence of potential vectors, suggest that inoculum pressure remains low in Louisiana. Therefore, it may be possible to keep yellow leaf at low levels by planting virus-free seed-cane.


2005 ◽  
Vol 30 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Marcos C. Gonçalves ◽  
Jorge Vega ◽  
Jurandi G. Oliveira ◽  
Mara M. A. Gomes

Infection by Sugarcane yellow leaf virus (ScYLV) causes severe leaf symptoms in sugarcane (Saccharum spp.) hybrids, which indicate alterations in its photosynthetic apparatus. To gain an overview of the physiological status of infected plants, we evaluated chlorophyll a fluorescence and gas exchange assays, correlating the results with leaf metabolic surveys, i.e., photosynthetic pigments and carbohydrate contents. When compared to healthy plants, infected plants showed a reduction in potential quantum efficiency for photochemistry of photosystem (PSII) and alterations in the filling up of the plastoquinone (PQ) pool. They also showed reduction in the CO2 net exchange rates, probably as a consequence of impaired quantum yield. In addition, reductions were found in the contents of photosynthetic leaf pigments and in the ratio chlorophyll a/chlorophyll b (chla/chlb). Carbohydrate content in the leaves was increased as a secondary effect of the ScYLV infection. This article discusses the relation of virus replication and host defense responses with general alterations in the photosynthetic apparatus and in the metabolism of infected plants.


2021 ◽  
Vol 144 ◽  
pp. 105577
Author(s):  
Roberto C.V. Burbano ◽  
Marcos C. Gonçalves ◽  
Paula M. Nobile ◽  
Ivan A. dos Anjos ◽  
Marcel F. da Silva ◽  
...  

2018 ◽  
Vol 9 (8) ◽  
pp. 1751-1762
Author(s):  
Maria Ines Barbosa Villa ◽  
José Luis Cruz Jaramillo ◽  
Hilda Victoria Silva Rojas ◽  
Karina De la Paz García Mariscal ◽  
José Concepción García Preciado ◽  
...  

  La caña de azúcar es uno de los cultivos industriales importantes a nivel mundial y es afectado por diversas enfermedades virales, incluido el sugarcane yellow leaf virus (SCYLV). En México este virus se ha detectado basado en sintomatología y °Brix; sin embargo, el diagnóstico basado en estos parámetros no es concluyente. El objetivo del estudio fue detectar la presencia y distribución del SCYLV en zonas cañeras del Occidente de México (Colima, Jalisco y Nayarit) y determinar el origen filogenético de un aislado de Colima. El trabajo se desarrolló en el Campo Experimental Tecomán durante 2013-2014. Se aisló el RNA total a partir de hojas colectadas y se realizaron las RT-PCR con oligonucleótidos específicos para SCYLV. Se analizaron 233 muestras y la incidencia de plantas portadoras del SCYLV fue 14.6%, afectando a los híbridos CP 72-2086, Mex 69-290 y Atemex 96-40. El análisis BLAST mostró que la secuencia parcial CP de Colmex-317 (512 pb) es homóloga con secuencias de Brasil, China, India, Kenia y USA, además comparte porcentajes de identidad superior a 99% con otras secuencias provenientes de varios países. El análisis filogenético de Colmex-317 con secuencias parciales y genomas completos del SCYLV aislados de diversas partes del mundo reveló que el aislado mexicano pertenece al genotipo de Brasil (BRA) y se agrupó con secuencias de Brasil, China, Kenia y Sudáfrica. Sin embargo, es necesario evaluar un mayor número de aislados y secuencias de mayor longitud para determinar si el genotipo BRA es el único presente en México.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1177-1180 ◽  
Author(s):  
M. Chatenet ◽  
C. Delage ◽  
M. Ripolles ◽  
M. Irey ◽  
B. E. L. Lockhart ◽  
...  

Sugarcane yellow leaf virus (SCYLV) was detected for the first time in 1996 in the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) sugarcane quarantine at Montpellier by reverse transcription-polymerase chain reaction (RT-PCR) in varieties from Brazil, Florida, Mauritius, and Réunion. Between 1997 and 2000, the virus was found by RT-PCR and/or tissue-blot immunoassay (TBIA) in additional varieties from Barbados, Cuba, Guadeloupe, Indonesia, Malaysia, Philippines, Puerto Rico, and Taiwan, suggesting a worldwide distribution of the pathogen. An excellent correlation was observed between results obtained for the two diagnostic techniques. However, even though only a few false negative results were obtained by either technique, both are now used to detect SCYLV in CIRAD's sugarcane quarantine in Montpellier. The pathogen was detected by TBIA or RT-PCR in all leaves of sugarcane foliage, but the highest percentage of infected vascular bundles was found in the top leaves. The long hot water treatment (soaking of cuttings in water at 25°C for 2 days and then at 50°C for 3 h) was ineffective in eliminating SCYLV from infected plants. Sugarcane varieties from various origins were grown in vitro by apical bud culture and apical meristem culture, and the latter proved to be the most effective method for producing SCYLV-free plants.


Sign in / Sign up

Export Citation Format

Share Document