scholarly journals Incidence of Phytophthora Root Rot of Fraser Fir in North Carolina and Sensitivity of Isolates of Phytophthora cinnamomi to Metalaxyl

Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 661-664 ◽  
Author(s):  
D. M. Benson ◽  
L. F. Grand

A survey of Fraser fir Christmas trees in North Carolina for incidence of Phytophthora root rot was conducted during 1997 and 1998. Field sites (7- to 13-year-old trees) and nursery transplant beds (4- to 5-year-old trees) selected at random were surveyed based on foliar symptoms of Phytophthora root rot. Field sites were surveyed with a random transect method (>3,000 trees/field) or by counting all trees (<3,000 trees/field). Overall, incidence of Phytophthora root rot averaged 9% over the 58 field sites sampled, with a range of 0 to 75%. No relationship was found between number of years Fraser fir had been planted in the field site and disease incidence. Disease incidence did not increase as field sites were rotated through second or third crops of Fraser fir. Phytophthora spp. were recovered from 1.8% of asymptomatic trees sampled from 58 field sites across the state. P. cinnamomi accounted for 91% of the Phytophthora isolates recovered. In nursery transplant beds where a systematic sampling procedure was used, incidence of diseased trees averaged 2%, with a range of 0 to 12% across 16 locations. Recovery of Phytophthora spp. averaged 1.2% from root samples collected from 50 asymptomatic seedlings at each location. Isolates collected from the field and nursery transplant beds were grown on cornmeal agar incorporated with 0, 1, 1.25, 10, or 100 μg a.i. metalaxyl/ml. All 166 isolates of P. cinnamomi tested were sensitive to metalaxyl at 1 or 1.25 μg a.i. metalaxyl/ml. Although incidence of Phytophthora root rot has not increased in the state compared to a survey done in 1976 to 1977, the disease continues to limit production of Fraser fir in North Carolina.

Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1171-1180 ◽  
Author(s):  
D. M. Benson ◽  
L. F. Grand ◽  
C. S. Vernia ◽  
T. R. Gottwald

In 1999, 19 plots of Fraser fir (Abies fraseri) with a disease focus were established in commercial plantings grown for Christmas tree production in the mountains of five western North Caro-lina counties. Progress of Phytophthora root rot caused by Phytophthora cinnamomi as estimated by mortality was followed in each plot over 3 to 4 years in an attempt to understand dispersal of inoculum. Slope, aspect, and field production age at the time plots were established were recorded. Rainfall estimated from National Weather Service stations each growing season also was recorded. The relationship of site parameters and rainfall to dispersal and disease was investigated. Disease incidence and mortality were assessed in June and September each year for 3 or 4 years depending on plot. Phytophthora root rot as estimated by mortality counts over time in a logistic regression model progressed in only five of 19 plots over 3 years. None of the site parameters correlated with mortality data, although slightly more disease was found in plots with a north aspect. Rainfall was below normal in the 3 years of the study and did not correlate with mortality in any year. Lack of disease progress in the majority of plots was attributed to drought conditions in the region. In the five plots where mortality increased over time, spatial analysis suggested an aggregated pattern of diseased plants. Aggregation was apparent but not very strong among nearest neighbors, but was considerably stronger among groups of trees within a local area. This aggregation within groups was stronger when larger group sizes were examined by beta-binomial analysis. A spatial analysis by distance indices method (SADIE) indicated the presence of secondary clusters occurring several meters away from the main focus. A stochastic model also was employed that indicated a combination of spatial processes were likely involved, specifically a tendency toward spread within a local area, but not necessarily to the nearest neighboring trees, combined with an influence of background inoculum that could not be accounted for within local areas and may have come from external sources. Thus, all sources of inoculum including infected planting stock, inoculum in soil, infected trees, and contaminated equipment were equally important in epidemics of Phytophthora root rot in Fraser fir and dispersal of P. cinnamomi.


2006 ◽  
Vol 7 (1) ◽  
pp. 25 ◽  
Author(s):  
D. M. Benson ◽  
J. R. Sidebottom ◽  
J. Moody

Fungicides were evaluated for control of Phytophthora root rot for five growing seasons in two field plantings of Fraser fir (Abies fraseri) affected by Phytophthora cinnamomi in western North Carolina. At the first site, which had a fairly well-drained soil, treatment programs with Aliette (5 lb/100 gal, three applications per year), Subdue Maxx (3.7 fl oz/1.15 gal/1000 ft2, two applications per year), and Subdue GR (5.75 lb/1000 ft2, two applications per year) maintained low rates of mortality (< 10%) for three growing seasons, whereas tree mortality in the untreated plots reached 13 and 37% by the second and third growing seasons, respectively. At the second site, which was in a flood plain, disease did not develop during the first 2.5 years, even in untreated control plots. However, mortality increased rapidly following several high-rainfall events, but none of the fungicides had any effect on disease development. Apparently, at least under conditions not overly conducive to the disease, the fungicide treatment programs can delay the onset of high mortality rates caused by P. cinnamomi in Fraser fir for up to three growing seasons. Accepted for publication 23 February 2006. Published 31 March 2006.


HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 693-695 ◽  
Author(s):  
Amal de Silva ◽  
Keith Patterson ◽  
Craig Rothrock ◽  
Ron McNew

Phytophthora root rot is a severe disease on blueberry (Vaccinium corymbosum L.) in poorly drained soils. Little is known about how mulching and frequent waterlogging affect disease severity in blueberries. Phytophthora cinnamomi Rands was grown on rice hulls, which were incorporated into the soil at the rate of 10% (v:v). Waterlogging conditions were imposed for 48 hours 1 week after planting on mulched and nonmulched blueberry plants at weekly, biweekly, and monthly intervals for a total of 3 months. Control plants were not subjected to flooding. The severity of Phytophthora root rot increased with time. Significant linear relationships were found between flooding interval and disease severity rating of shoot, percentage of root infection, and shoot and root dry weights of plants. Disease symptoms were minimal in control plants, but shoot disease rating and percentage of root infection were high in mulched and nonmulched plants that were flooded every week. Shoot and root dry weights were higher in 1997 than in 1996. In 1996, mulched plants had higher shoot dry weights than did nonmulched plants. Disease incidence was higher with weekly and biweekly flooding than with monthly or no flooding. However, mulching did not affect root infection.


2008 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Kelly L. Ivors ◽  
Z. Gloria Abad ◽  
D. Michael Benson

The pathogenicity of Pythium vexans isolates collected from fir samples with typical root rot symptoms in North Carolina was evaluated on Fraser fir seedlings (Abies fraseri). Two replicated pathogenicity trials involving seven treatments were conducted in the lath house and greenhouse. Although the P. vexans isolates examined in these trials were able to colonize Fraser fir root systems, they did not cause mortality or incite root rot symptoms. In comparison, Phytophthora cinnamomi, a known aggressive pathogen of Fraser fir, caused severe root rot symptoms in all plants. These experiments provided no evidence that P. vexans is a pathogen of Fraser fir. Accepted for publication 12 July 2008. Published 6 October 2008.


HortScience ◽  
2002 ◽  
Vol 37 (5) ◽  
pp. 815-818 ◽  
Author(s):  
Eric Hinesley ◽  
John Frampton

Orthotropic shoots (tips of primary axes) from 3-year-old Fraser fir seedlings [Abies fraseri (Pursh) Poir.] were grafted onto rootstocks of Fraser fir, Korean fir (A. koreana Wils.), momi fir (A. firma Sieb. & Zucc.), Nordmann fir (A. nordmanniana (Steven) Spach.), Turkish fir (A. bornmuelleriana Mattf.), and West Virginia balsam fir from Canaan Valley (Canaan fir) [A. balsamea (L.) Mill. var. phanerolepis Fern.]. Firstyear survival in the greenhouse was 92% to 98% except for momi fir (83%). The percentage of grafted plants with orthotropic shoots was 92% to 98%, except for Korean (81%) and momi fir (86%). Plants were subsequently established in replicated field experiments on three sites in the piedmont and mountains of North Carolina. In general, leader elongation of grafted Fraser fir scions was greater than leader growth on nongrafted transplants, including Fraser fir. Differences in survival appear to reflect interspecific variation in resistance to phytophthora root rot and/or tolerance of warm environments. Grafting may offer the potential to grow Abies Christmas trees on previously unsuitable sites, or to reclaim or continue using sites already seriously impacted by root rot.


2011 ◽  
Vol 101 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Brantlee Spakes Richter ◽  
Kelly Ivors ◽  
Wei Shi ◽  
D. M. Benson

Wood-based mulches are used in avocado production and are being tested on Fraser fir for reduction of Phytophthora root rot, caused by Phytophthora cinnamomi. Research with avocado has suggested a role of microbial cellulase enzymes in pathogen suppression through effects on the cellulosic cell walls of Phytophthora. This work was conducted to determine whether cellulase activity could account for disease suppression in mulch systems. A standard curve was developed to correlate cellulase activity in mulches with concentrations of a cellulase product. Based on this curve, cellulase activity in mulch samples was equivalent to a cellulase enzyme concentration of 25 U ml–1 or greater of product. Sustained exposure of P. cinnamomi to cellulase at 10 to 50 U ml–1 significantly reduced sporangia production, but biomass was only reduced with concentrations over 100 U ml–1. In a lupine bioassay, cellulase was applied to infested soil at 100 or 1,000 U ml–1 with three timings. Cellulase activity diminished by 47% between 1 and 15 days after application. Cellulase applied at 100 U ml–1 2 weeks before planting yielded activity of 20.08 μmol glucose equivalents per gram of soil water (GE g–1 aq) at planting, a level equivalent to mulch samples. Cellulase activity at planting ranged from 3.35 to 48.67 μmol GE g–1 aq, but no treatment significantly affected disease progress. Based on in vitro assays, cellulase activity in mulch was sufficient to impair sporangia production of P. cinnamomi, but not always sufficient to impact vegetative biomass.


2014 ◽  
Vol 32 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Nancy K. Osterbauer ◽  
Melissa Lujan ◽  
Gary McAninch ◽  
S. Lane ◽  
Aaron Trippe

In Oregon, the U.S. Nursery Certification (USNCP), Grower Assisted Inspection (GAIP), and Shipping Point Inspection (SPI) programs are used to certify nursery plants as pest free. To compare the programs' effectiveness for mitigating pest risk, potted plants grown within two USNCP, two GAIP, and two SPI nurseries were surveyed for Phytophthora root rot (Phytophthora spp.), Phytophthora foliar blight (Phytophthora spp.), bittercress (Cardamine spp.), snails and slugs (Class Gastropoda), and root weevils (Otiorhynchus spp.). A total of 1,635 plots were surveyed in the nurseries, with one or more pests detected in 1,003 plots. Based on the total percentage of plots found infested with a pest, significantly fewer were detected in the GAIP nurseries (55%) than in the USNCP nurseries (68%). However, bittercress incidence was significantly higher in GAIP nurseries (21%), while snails and slugs incidence was significantly higher in USNCP nurseries (49%), and Phytophthora root rot incidence was significantly higher in SPI nurseries (31%). Also, the plant families grown by the nurseries had a significant impact on pest incidence for two of the target pests, Phytophthora root rot and root weevils. While the GAIP seemed the best at mitigating pest incidence overall, none of the certification programs was consistently the most effective against all five target pests.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2560-2570 ◽  
Author(s):  
Jerry E. Weiland ◽  
Carolyn F. Scagel ◽  
Niklaus J. Grünwald ◽  
E. Anne Davis ◽  
Bryan R. Beck ◽  
...  

Rhododendrons are an important crop in the ornamental nursery industry, but are prone to Phytophthora root rot. Phytophthora root rot is a continuing issue on rhododendrons despite decades of research. Several Phytophthora species are known to cause root rot, but most research has focused on P. cinnamomi, and comparative information on pathogenicity is limited for other commonly encountered oomycetes, including Phytophthora plurivora and Pythium cryptoirregulare. In this study, three isolates each of P. cinnamomi, P. plurivora, and Py. cryptoirregulare were used to inoculate rhododendron cultivars Cunningham’s White and Yaku Princess at two different inoculum levels. All three species caused disease, especially at the higher inoculum level. P. cinnamomi and P. plurivora were the most aggressive pathogens, causing severe root rot, whereas Py. cryptoirregulare was a weak pathogen that only caused mild disease. Within each pathogen species, isolate had no influence on disease. Both P. cinnamomi and P. plurivora caused more severe disease on Cunningham’s White than on Yaku Princess, suggesting that the relative resistance and susceptibility among rhododendron cultivars might be similar for both pathogens. Reisolation of P. cinnamomi and P. plurivora was also greater from plants exhibiting aboveground symptoms of wilting and plant death and belowground symptoms of root rot than from those without symptoms. Results show that both P. cinnamomi and P. plurivora, but not Py. cryptoirregulare, are important pathogens causing severe root rot in rhododendron. This study establishes the risks for disease resulting from low and high levels of inoculum for each pathogen. Further research is needed to evaluate longer term risks associated with low inoculum levels on rhododendron health and to explore whether differences among pathogen species affect disease control.


Sign in / Sign up

Export Citation Format

Share Document