scholarly journals Downy Mildew Caused by Peronospora radii on Marguerite Daisy (Argyranthemum frutescens) in California

Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1163-1163
Author(s):  
S. T. Koike ◽  
D. Fogle ◽  
S. A. Tjosvold ◽  
A. I. King

In California, marguerite daisy (Argyranthemum frutescens [= Chyrsanthemum frutescens]) is an important, commercially grown, perennial flowering plant that is used as a potted plant, cutflower, and landscape plant. For two seasons (2003 and 2004), a downy mildew disease has been affecting marguerite daisy at wholesale container and field cutflower nurseries and retail nurseries in coastal California (Monterey, Santa Cruz, and San Mateo counties). The disease occurred early in the season (January) and continued to infect new foliage throughout the year whenever cool, foggy weather occurred. The disease primarily affected newly expanded young leaves on shoot tips. Such leaves were chlorotic, twisted and bent, and stunted. In some cases, leaflet tips turned black and necrotic. The abaxial sides of affected leaves were heavily colonized by the extensive purplish brown growth of downy mildew. Older, fully expanded foliage was unaffected. Flowers could be infected with the fungus growing on the undersides of petals and resulting in slightly twisted, bent shapes. Symptomatic plants and cutflower stems were unmarketable. Hyaline conidiophores emerged from stomata, branched dichotomously (rarely trichotomously), and had branches ending in slender, curved branchlets that did not have swollen tips. Conidia were slightly brown, ovoid, mostly nonpapillate, and measured 28.5 to 40.0 × 19.0 to 28.0 μm. Oospores were not observed in plant tissue. On the basis of symptoms and morphology of the organism, the pathogen was identified as Peronospora radii (1,2). To prove pathogenicity, plants were spray inoculated with conidial suspensions, incubated for 24 h in a dew chamber (18 to 20°C), and then maintained in a greenhouse (22 to 24°C).After 18 to 20 days, symptoms and signs of downy mildew developed only on the newest foliage of inoculated plants, and the pathogen morphology matched that of the originally observed pathogen. Untreated control plants did not develop downy mildew. To our knowledge, this is the first report of downy mildew caused by P. radii on marguerite daisy in California and the United States. The pathogen has not been reported on other hosts in California. P. radii is found on marguerite daisy in England, Germany, Israel, Mexico, and the former Yugoslavia (1,2). References: (1) I. S. Ben-Ze'ev et al. Phytoparasitica 15:51, 1987. (2) O. Constantinescu. Sydowia Ann. Mycol. 41:79, 1989.

2020 ◽  
Vol 21 (3) ◽  
pp. 214-216
Author(s):  
Margery Daughtrey ◽  
Janna Beckerman ◽  
William J. Davis ◽  
Karen Rane ◽  
Jo Anne Crouch

Two new series of Impatiens walleriana (impatiens) cultivars, Beacon and Imara XDR, were released to commercial growers in the United States in 2019 to 2020. Field trials show these new cultivar series are highly resistant to impatiens downy mildew (IDM). However, neither of these two impatiens series are completely immune to the disease, and preventive fungicide programs are still recommended for use throughout production to maintain plant health. Here we report two destructive outbreaks of IDM from Imara XDR in two commercial production facilities in California, one in 2019 and one in 2020. The disease outbreaks were caused by a known rDNA genotype of Plasmopara destructor (synonym = P. obducens). Modified Koch’s postulates showed that the pathogen could infect and cause disease in both Beacon and Imara XDR plants. Mefenoxam applied by both growers may have been ineffective due to resistance in P. destructor populations, which has been demonstrated on several previous occasions. Given these findings, fungicide programs intended to supplement genetic resistance should not be overly reliant upon application of mefenoxam and should utilize effective materials from different mode of action groups, in rotation. Fungicides to supplement genetic resistance are particularly appropriate in frost-free areas or in any circumstances that provide a potential inoculum source.


Plant Disease ◽  
2002 ◽  
Vol 86 (10) ◽  
pp. 1176-1176 ◽  
Author(s):  
S. A. Tjosvold ◽  
S. T. Koike

In California, Digitalis purpurea (common foxglove) and D. grandiflora (yellow foxglove) are grown as cutflower, potted, and landscape plant commodities. In the spring of 2002, after seasonably wet and cool weather, severe downy mildew was observed on potted common foxglove plants in commercial nurseries in coastal California (Santa Cruz County). Initial symptoms on leaves consisted of light green, rectangular areas that were vein-delimited and measured 2 to 5 × 8 to 12 mm. Such spots later became chlorotic. As disease progressed, chlorotic spots coalesced and turned necrotic. The purple-gray sporulation of the pathogen could be seen primarily on abaxial leaf surfaces. However, in some cases, extensive fungal growth developed on adaxial surfaces of lower leaves. Conidiophores branched dichotomously and measured 278 to 520 μm long from the lower end to the first branches and 11 to 14 μm across at the widest part of the swollen base. Branch ends were slender with curved tips that measured 11 to 22 μm long. Conidia were hyaline, ellipsoid to ovoid, and measured 22 to 31 μm × 17 to 19 μm. Oospores were not observed. The pathogen was identified as Peronospora digitalidis (1,2). Pathogenicity tests were not conducted. However, the consistent association of sporulation with symptoms, the internal hyphal growth giving rise to conidiophores, and the obligate nature of Peronospora pathogens clearly indicated that P. digitalidis was the causal agent of this disease. Field observations indicated that D. purpurea cvs. Alba and Apricot and Foxy hybrids were very susceptible, D. × mertonensis ( = D. grandiflora × D. purpurea) appeared to be moderately susceptible, and D. grandiflora grown in the same area was symptomless. One planting of Foxy hybrid was 100% infected, and the entire lot of several hundred plants was discarded. The disease also was found on Foxy hybrid seedlings grown in propagation greenhouses. To our knowledge, this is the first report of downy mildew caused by P. digitalidis on cultivars of D. purpurea in California and the United States. This disease has been reported previously in Europe, Asia, and New Zealand (1,2). References: (1) G. Hall. Mycopathologia 126:47, 1994. (2) E. H. C. McKenzie and J. M. Dingley. N. Z. J. Bot. 34:263, 1996.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1058-1058 ◽  
Author(s):  
C. Salgado-Salazar ◽  
K. K. Rane ◽  
J. A. Crouch

2021 ◽  
Vol 8 (1-2) ◽  
pp. 205-221
Author(s):  
Attila Pohlmann

The demand for ever-accelerating fast fashion is unprecedented, while its supply chain burdens environmental systems. Hedonic fashion consumption is generally unfettered by sustainability concerns, but evidence suggests that island geographies–with dense boundaries between the built and the natural environment–have a heightening effect on eco-consciousness. A framework based on the contemporary condition of hyperconsumption is proposed: island geography heightens sustainability awareness; consequently, fashion consumers located on islands trade-off perceived hedonic benefits of fashion consumption against perceived moral benefits of connection with nature. The framework is supported by visual evidence collected on the Galápagos island Santa Cruz, indicating that male fashion consumers express connection with nature by means of tattoos, slogans on clothing and choice of eco-friendly materials. Quantitative tests with survey data from the United States and Ecuador show that residents in Hawaiʻi and the Galápagos have higher levels of connection with nature compared to residents on the associated continental areas. This effect is mediated by decreased perceived rewards of hedonic fashion consumption, but the effect is overall weaker in Ecuador compared to the United States due to differences in purchasing power and attitudes towards consumerism. Because of the stereotype that eco-friendly is unmanly, men are generally less likely to embrace environmentally friendly products and the findings of this research point to avenues to overcome this barrier.


2017 ◽  
Vol 107 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Steven Beach ◽  
Michael Kovens ◽  
LeAnn Hubbert ◽  
Shae Honesty ◽  
Qiang Guo ◽  
...  

Grapevine vein clearing virus (GVCV), a new member of the genus Badnavirus in the family Caulimoviridae, is associated with a vein clearing and vine decline disease that severely affects grape production and berry quality in commercial vineyards in the Midwest region of the United States. In this paper, the genetic and phenotypic characteristics of GVCV-VRU1 and GVCV-VRU2, two isolates from wild Vitis rupestris grapevines in their native habitat, are described. The GVCV-VRU1 genome is 7,755 bp long while the GVCV-VRU2 genome consists of 7,725 bp, both of which are different from the genome of the GVCV-CHA isolate (7,753 bp), which was originally discovered in the grape cultivar ‘Chardonel’. The nucleotide sequence identity among GVCV-VRU1, GVCV-VRU2, and GVCV-CHA ranges from 91.6 to 93.4%, and open reading frame (ORF) II is the most divergent ORF with only 83.3 to 88.5% identity. Sequence analysis of the ORF II indicated that GVCV isolates genetically similar to GVCV-VRU1 and GVCV-VRU2 also are present in commercial vineyards. Symptoms of GVCV-VRU1- or GVCV-VRU2-infected wild V. rupestris grapevine appeared initially as translucent vein clearing on young leaves and progressed to vein necrosis on mature leaves. Inoculation of GVCV-VRU1 or GVCV-VRU2 by grafting onto grape cultivar Chardonel resulted in mild mottle and leaf distortion. The natural range of wild V. rupestris grapevines overlaps with commercial vineyards in the Midwestern United States. Therefore, the discovery of GVCV isolates in wild V. rupestris grapevines has important implications for epidemics and management of the GVCV-associated disease.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
J. A. Crouch ◽  
M. P. Ko ◽  
J. M. McKemy

Downy mildew of impatiens (Impatiens walleriana Hook.f.) was first reported from the continental United States in 2004. In 2011 to 2012, severe and widespread outbreaks were documented across the United States mainland, resulting in considerable economic losses. On May 5, 2013, downy mildew disease symptoms were observed from I. walleriana ‘Super Elfin’ at a retail nursery in Mililani, on the Hawai'ian island of Oahu. Throughout May and June 2013, additional sightings of the disease were documented from the islands of Oahu, Kauai, Maui, and Hawai'i from nurseries, home gardens, and botanical park and landscape plantings. Symptoms of infected plants initially showed downward leaf curl, followed by a stippled chlorotic appearance on the adaxial leaf surfaces. Abaxial leaf surfaces were covered with a layer of white mycelia. Affected plants exhibited defoliation, flower drop, and stem rot as the disease progressed. Based on morphological and molecular data, the organism was identified as Plasmopara obducens (J. Schröt.) J. Schröt. Microscopic observation disclosed coenocytic mycelium and hyaline, thin-walled, tree-like (monopodial branches), straight, 94.0 to 300.0 × 3.2 to 10.8 μm sporangiophores. Ovoid, hyaline sporangia measuring 11.0 to 14.6 × 12.2 to 16.2 (average 13.2 × 14.7) μm were borne on sterigma tips of rigid branchlets (8.0 to 15.0 μm) at right angle to the main axis of the sporangiophores (1,3). Molecular identification of the pathogen was conducted by removing hyphae from the surface of three heavily infected leaves using sterile tweezers, then extracting DNA using the QIAGEN Plant DNA kit (QIAGEN, Gaithersburg, MD). The nuclear rDNA internal transcribed spacer was sequenced from each of the three samples bidirectionally from Illustra EXOStar (GE Healthcare, Piscataway, NJ) purified amplicon generated from primers ITS1-O and LR-0R (4). Resultant sequences (GenBank KF366378 to 80) shared 99 to 100% nucleotide identity with P. obducens accession DQ665666 (4). A voucher specimen (BPI892676) was deposited in the U.S. National Fungus Collections, Beltsville, MD. Pathogenicity tests were performed by spraying 6-week-old impatiens plants (I. walleriana var. Super Elfin) grown singly in 4-inch pots with a suspension of 1 × 104 P. obducens sporangia/ml until runoff using a handheld atomizer. Control plants were sprayed with distilled water. The plants were kept in high humidity by covering with black plastic bags for 48 h at 20°C, and then maintained in the greenhouse (night/day temperature of 20/24°C). The first symptoms (downward curling and chlorotic stippling of leaves) and sporulation of the pathogen on under-leaf surfaces of the inoculated plants appeared at 10 days and 21 days after inoculation, respectively. Control plants remained healthy. Morphological features and measurements matched those of the original inoculum, thus fulfilling Koch's postulates. To our knowledge, this is the first report of downy mildew on I. walleriana in Hawai'i (2). The disease appears to be widespread throughout the islands and is likely to cause considerable losses in Hawai'ian landscapes and production settings. References: (1) O. Constantinescu. Mycologia 83:473, 1991. (2) D. F. Farr and A. Y. Rossman. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 16, 2013. (3) P. A. Saccardo. Syllogue Fungorum 7:242, 1888. (4) M. Thines. Fungal Genet Biol 44:199, 2007.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 591-591 ◽  
Author(s):  
S. T. Koike ◽  
P. A. Nolan ◽  
S. A. Tjosvold ◽  
K. L. Robb

In California, hybrid statice (Misty series; Limonium bellidifolium × Limonium latifolium) is grown as a commercial cutflower crop in fields and greenhouses. In 1997, downy mildew was observed on statice plantings in both southern (San Diego County) and central (Monterey and Santa Cruz counties) parts of coastal California. Initial symptoms consisted of light green, irregularly shaped leaf spots that, after a few days, became chlorotic. As disease progressed, chlorotic spots coalesced and turned necrotic, at times resulting in extensive death of leaf tissues. Under favorable conditions, the purple to gray sporulation of the pathogen could be seen on abaxial surfaces of leaves. Conidiophores had main trunks with dichotomous branches and measured 194 to 335 μm in length (mean = 229 μm) from the base to the first branches and 7 to 8 μm across at the widest part. Branch ends were slender with curved tips that measured 5 to 8 μm long. Conidia were ovoid to globose with very short pedicels, and measured 14 to 19 μm × 14 to 17 μm. Conidial surfaces appeared slightly roughened when viewed with a scanning electron microscope. Clearing leaf sections with 10% NaOH (1) revealed the presence of yellow-brown, globose oospores that measured 31 to 47 μm. The pathogen was identified as Peronospora statices (1). Pathogenicity was demonstrated by pressing leaves with abundant sporulation against healthy leaves of test plants (Misty White) and then placing inoculated plants in a humidity chamber. After 10 to 12 days, symptoms similar to those originally observed developed on inoculated plants; after 14 to 16 days, purple fungal growth morphologically similar to the original isolates grew on leaves. Uninoculated control plants did not develop symptoms or signs of downy mildew. This is the first report of downy mildew caused by P. statices on statice in California and the rest of the United States. The disease has also been confirmed on Blue Fantasia (L. bellidifolium × L. perezii). This disease has been reported previously in Italy, The Netherlands, and the United Kingdom (1). Reference: (1) G. S. Hall et al. Eur. J. Plant Pathol. 103:471, 1997.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 909-909 ◽  
Author(s):  
S. N. Wegulo ◽  
S. T. Koike ◽  
M. Vilchez ◽  
P. Santos

During February 2004, diseased double impatiens (Impatiens walleriana) plants were received from a commercial grower in southern California. The upper surfaces of symptomatic leaves were pale yellow with no distinct lesions. Diseased leaves later wilted, and severely affected leaves abscised from the stem. At the nursery, only double impatiens plants in the Fiesta series were infected, and some cultivars were more heavily infected than others. Disease incidence in cv. Sparkler Hot pink was nearly 100%. The interior of infected leaves was colonized by coenocytic mycelium. A conspicuous white growth was observed only on the underside of leaves. Sporangiophores were hyaline, thin walled, emergent from stomata, and had slightly swollen bases. Sporangiophore branching was distinctly monopodial. Smaller sporangiophore branches were arranged at right angles to the supporting branches, and tips of branches measured 8 to 14 μm long. Sporangia were ovoid and hyaline with a single pore on the distal ends. Distal ends of sporangia were predominantly flat but occasionally had a slight papilla. Short pedicels were present on the attached ends. Sporangia measured 19.4 to 22.2 (-25.0) μm × 13.9 to 16.7 (-19.4) μm. Oospores were not observed in leaf tissue. On the basis of symptoms and morphology of the organism, the pathogen was identified as Plasmopara obducens J. Schröt. Pathogenicity tests were done on double type cvs. Fiesta, Tioga Red, and Tioga Cherry Red and on single type cvs. Cajun Watermelon and Accent Lilac. Plants were spray inoculated with sporangiospore suspensions (1 × 104 sporangiospores per milliliter), incubated for 24 h in a dew chamber (18 to 20°C), and then maintained in a greenhouse (22 to 24°C). Symptoms and signs of downy mildew developed after 12 days only on inoculated cv. Fiesta plants, and the pathogen morphology matched that of the originally observed pathogen. Nontreated control plants did not develop downy mildew. To our knowledge, this is the first report of downy mildew on impatiens in California. P. obducens is one of two causal agents of downy mildew of impatiens (2,4). The other pathogen, Bremiella sphaerosperma, has dichotomous sporangiophore branching and causes lesions with well-defined margins (2,4). In the United States, the disease has been recorded in the eastern and northeastern states and in Indiana, Minnesota, Mississippi, Montana, and Wisconsin (3). In Canada, the disease has been recorded in Manitoba and Quebec (1). References: (1) I. L. Conners. An Annotated Index of Plant Diseases in Canada and Fungi Recorded on Plants in Alaska, Canada, and Greenland. Research Branch, Canada Department of Agriculture, Publication 1251, 1967. (2) O. Constantinescu. Mycologia 83:473, 1991. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, 1989. (4) G. W. Wilson. Bull. Torrey Bot. Club 34:387, 1907.


Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 428-441 ◽  
Author(s):  
Gerald J. Holmes ◽  
Peter S. Ojiambo ◽  
Mary K. Hausbeck ◽  
Lina Quesada-Ocampo ◽  
Anthony P. Keinath

In 2004, an outbreak of cucurbit downy mildew (CDM) caused by the oomycete Pseudoperonospora cubensis (Berk. & M. A. Curtis) Rostovzev resulted in an epidemic that stunned the cucumber (Cucumis sativus L.) industry in the eastern United States. The disease affects all major cucurbit crops, including cucumber, muskmelon, squashes, and watermelon. Although the 2004 epidemic began in North Carolina, the cucumber crop from Florida to the northern growing regions in the United States was devastated, resulting in complete crop loss in several areas. Many cucumber fields were abandoned prior to harvest. The rapid spread of the disease coupled with the failure of fungicide control programs surprised growers, crop consultants, and extension specialists. The epidemic raised several fundamental questions about the potential causes for the resurgence of the disease. Some of these questions revolved around whether the epidemic would recur in subsequent years and the possible roles that changes in the host, pathogen, and environment may have played in the epidemic.


Sign in / Sign up

Export Citation Format

Share Document