scholarly journals Detection and Partial Molecular Characterization of Two Plum pox virus Isolates from Plum and Wild Apricot in Southeast Kazakhstan

Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 973-979 ◽  
Author(s):  
S. Spiegel ◽  
E. M. Kovalenko ◽  
A. Varga ◽  
D. James

Plum pox virus (PPV) was detected in wild apricot and cultivated plum maintained in a germ plasm collection in Kazakhstan. Both isolates were typed as D strain, with no evidence of recombination. The virus was detected by triple-antibody sandwich enzyme-linked immunosorbent assay (ELISA) utilizing the universal PPV-specific monoclonal antibody (MAb) 5B as the secondary antibody, and by reverse-transcription polymerase chain reaction (RT-PCR) assay using primers that amplified a 243-bp fragment in the C-terminus of the coat protein (CP) coding region. Immunocapture (IC) RT-PCR was used to detect PPV in nine wild apricot accessions, including eight ELISA-negative and one ELISA-positive. The plum and apricot isolates reacted positively in Western blot assay with the universal MAb 5B, and negatively with the strain-M-specific MAb-AL. Restriction fragment length polymorphism analysis applied to the amplified 243-bp fragment showed that restriction sites for AluI and RsaI were present in the were present in the plum and apricot samples. An amplified 836-bp cDNA fragment derived from the P3-6K1 coding region of both isolates had restriction profiles typical for strain D. Nucleotide identities of 99 to 100% were observed for the 243-bp fragments of the Kazakhstan isolates when compared with the corresponding regions of strain D, and 94 to 95% identity with strain M. Nucleotide sequence analysis of the entire CP coding region of the plum and apricotisolates resulted in the identification of a unique deletion of six nucleotides (two deduced proline amino acid residues) in the N-terminal region in the plum isolate. This is the first deletion of this nature observed among PPV isolates. The DAG motif was present in both isolates. Several nucleotide substitutions in the CP coding region were common to the plum and apricot isolates and appear to be unique to the Kazakstan isolates. This suggests a close relationship between the isolates.

Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1119-1124 ◽  
Author(s):  
D. James ◽  
A. Varga ◽  
D. Thompson ◽  
S. Hayes

Plum pox virus (PPV) isolate 3174-01 was detected by triple-antibody sandwich enzyme-linked immunosorbent assay using the universal PPV monoclonal antibody (MAb) 5B as the secondary antibody, and by reverse-transcription polymerase chain reaction (RT-PCR) using primers that amplify a 243-bp fragment in the C-terminus of the coat protein coding region. The restriction sites RsaI and AluI were absent from this fragment, which is a feature unique to PPV-C isolates. The restriction sites in 3174-01 were replaced by GTAA/GTGA and GGCA, respectively. There was 95 to 99, 94, 91, and 92 to 94% identity of the 243-bp fragment of 3174-01 with the corresponding region of the strains C, D, EA, and M, respectively. Attempts to detect the virus by RT-PCR using strain C-specific primers in three different approaches were unsuccessful. All molecular techniques assessed in attempting to strain type isolate 3174-01 gave negative results, or results inconsistent for D or M in the case of P3-6K1 restriction fragment length polymorphism analysis. Isolate 3174-01 reacted in Western blot assay with MAb 5B, with an estimated molecular mass of 32 kDa. No reaction was observed with D-, M-, EA-, or C-specific monoclonal antibodies in Western blot or enzyme-linked immunosorbent assay. The molecular and serological data seem to indicate that PPV isolate 3174-01 does not belong to any of the recognized strains of PPV.


2006 ◽  
Vol 96 (11) ◽  
pp. 1237-1242 ◽  
Author(s):  
H. Xu ◽  
J. Nie

Alfalfa mosaic virus (AMV) was detected in potato fields in several provinces in Canada and characterized by bioassay, enzyme-linked immunosorbent assay, and reverse-transcription polymerase chain reaction (RT-PCR). The identity of eight Canadian potato AMV isolates was confirmed by sequence analysis of their coat protein (CP) gene. Sequence and phylogenetic analysis indicated that these eight AMV potato isolates fell into one strain group, whereas a slight difference between Ca175 and the other Canadian AMV isolates was revealed. The Canadian AMV isolates, except Ca175, clustered together among other strains based on alignment of the CP gene sequence. To detect the virus, a pair of primers, AMV-F and AMV-R, specific to the AMV CP gene, was designed based on the nucleotide sequence alignment of known AMV strains. Evaluations showed that RT-PCR using this primer set was specific and sensitive for detecting AMV in potato leaf and tuber samples. AMV RNAs were easily detected in composite samples of 400 to 800 potato leaves or 200 to 400 tubers. Restriction analysis of PCR amplicons with SacI was a simple method for the confirmation of PCR tests. Thus, RT-PCR followed by restriction fragment length polymorphism analysis may be a useful approach for screening potato samples on a large scale for the presence of AMV.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 529-529 ◽  
Author(s):  
Y. K. Chen ◽  
C. C. Yang ◽  
H. T. Hsu

Allamanda (Allamanda cathartica L., family Apocynaceae) is native to Brazil and is a popular perennial shrub or vine ornamental in Taiwan. Plants showing severe mosaic, rugosity, and leaf distortion symptoms on leaves are common in commercial nurseries and private gardens. Examination of crude sap prepared from symptomatic leaves using an electron microscope revealed the presence of spherical virus particles with a diameter of approximately 28 nm. The virus was mechanically transmitted to indicator plants and induced symptoms similar to those incited by Cucumber mosaic virus (CMV). The virus caused local lesions on inoculated leaves of Chenopodium quinoa and C. amaranticolor and systemic mosaic in Cucumis sativus, Lycopersicon esculentum, Nicotiana benthamiana, N. glutinosa, N. rustica, and N. tabacum. On N. tabacum, necrotic ringspots developed on inoculated leaves followed by systemic mosaic. Tests of leaf sap extracted from naturally infected allamanda and inoculated indicator plants using enzyme-linked immunosorbent assay were positive to rabbit antiserum prepared to CMV. Viral coat protein on transblots of sodium dodecyl sulfate-polyacrylamide gel electrophoresis reacted with CMV subgroup I specific monoclonal antibodies (2). With primers specific to the 3′-half of RNA 3 (1), amplicons of an expected size (1,115 bp) were obtained in reverse transcription-polymerase chain reaction (RT-PCR) using total RNA extracted from infected allamanda and N. benthamiana. The amplified fragment (EMBL Accession No. AJ871492) was cloned and sequenced. It encompasses the 3′ part of the intergenic region of RNA 3 (158 nt), CP ORF (657 nt), and 3′ NTR (300 nt) showing 91.8–98.9% and 71.4–72.8% identities to those of CMV in subgroups I and II, respectively. Results of MspI-digested restriction fragment length polymorphism patterns of the RT-PCR fragment and the nucleotide sequence analysis indicate that the CMV isolate from allamanda belongs to subgroup IB, which is predominant on the island. To our knowledge, CMV is the only reported virus that infects allamanda and was first detected in Brazil (3), and this is the first report of CMV infection in allamanda plants occurring in Taiwan. References: (1) Y. K. Chen et al. Arch. Virol. 146:1631, 2001. (2) H. T. Hsu et al. Phytopathology 90:615, 2000. (3) E. W. Kitajima. Acta. Hortic. 234:451, 1988.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 202-202 ◽  
Author(s):  
L. Levy ◽  
V. Damsteegt ◽  
R. Welliver

Plum pox (Sharka) is the most important virus disease of Prunus in Europe and the Mediterranean region and is caused by Plum pox potyvirus (PPV). In September 1999, PPV-like symptoms were observed in peach fruit culls in a packinghouse in Pennsylvania. All symptomatic fruit originated from a single block of peach (P. persica cv. Encore) in Adams County. Trees in the block exhibited ring pattern symptoms on their leaves. A potyvirus was detected in symptomatic fruit using the Poty-Group enzyme-linked immunosorbent assay (ELISA) test from Agdia (Elkhart, IN). Reactions for symptomatic peach fruit and leaves also were positive using triple-antibody sandwich ELISA with the PPV polyclonal antibody from Bioreba (Carrboro, NC) for coating, the Poty-Group monoclonal antibody (MAb; Agdia) as the intermediate antibody, and double-antibody sandwich ELISA with PPV detection kits from Sanofi (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, France) and Agdia and the REAL PPV kit (Durviz, Valencia, Spain) containing universal (5B) and strain typing (4DG5 and AL) PPV MAbs (1). PPV also was identified by immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) amplification and subsequent sequencing of the 220-bp 3′ noncoding region (2) (>99% sequence homology to PPV) and by IC-RT-PCR amplification of a 243-bp product in the coat protein (CP) gene (1). The virus was identified as PPV strain D based on serological typing with strainspecific MAbs and on PCR-restriction fragment length polymorphism of the CP IC-RT-PCR product with Rsa1 and Alu1 (1). This is the first report of PPV in North America. References: (1) T. Candresse et al. Phytopathology 88:198, 1998. (2) L. Levy and A. Hadidi. EPPO Bull. 24:595, 1994.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 1027-1034 ◽  
Author(s):  
Juergen Bux ◽  
Ernst-Ludwig Stein ◽  
Philippe Bierling ◽  
Patricia Fromont ◽  
Mary Clay ◽  
...  

Abstract Polymorphic structures of the neutrophil Fcγreceptor IIIb (FcγRIIIb) result in alloantibody formation that causes alloimmune neonatal neutropenia and transfusion reactions. Alloantigens located on FcγRIIIb include the antigens NA1 and NA2. In four cases of alloimmune neonatal neutropenia, granulocyte-specific alloantibodies directed against a thus far unknown antigen were detected by granulocyte agglutination and immunofluorescence tests in the maternal sera. By the use of the monoclonal antibody–specific immobilization of granulocyte antigens (MAIGA) assay, the new antigen, termed SH, was located on the FcγRIIIb. Nucleotide sequence analysis of the FcγRIIIb coding region from a SH(+) individual showed a single-base C→A mutation at position 266, which results in an Ala78Asp amino acid substitution. A family study confirmed that this nucleotide difference is inherited, and corresponds to the SH phenotype. Serologic typing of 309 randomly selected individuals showed an antigen frequency of 5% in the white population. The same frequency was found by genotyping, for which a technique based on polymerase chain reaction (PCR) using sequence-specific primers (PCR-SSP) was developed. Typing of all SH(+) individuals for NA1 and NA2, and PCR-restriction fragment length polymorphism analysis of the NA-specific PCR products from five SH(+) individuals using the SH-specific endonuclease SfaN I showed that SH antigen is very probably the result of an additional mutational event in the NA2 form of the FcγRIIIB gene. Immunochemical studies also demonstrated that the SH determinants reside on the 65- to 80-kD NA2 isoform of the FcγRIIIb. Our findings show the existence of an additional polymorphism of the FcγRIIIb, which can result in alloantibody formation causing alloimmune neonatal neutropenia.


2010 ◽  
Vol 23 (4) ◽  
pp. 425-435 ◽  
Author(s):  
Daolong Dou ◽  
Shiv D. Kale ◽  
Tingli Liu ◽  
Qinghua Tang ◽  
Xia Wang ◽  
...  

At least 12 avirulence genes have been genetically identified and mapped in Phytophthora sojae, an oomycete pathogen causing root and stem rot of soybean. Previously, the Avr4 and Avr6 genes of P. sojae were genetically mapped within a 24 kb interval of the genome. Here, we identify Avr4 and Avr6 and show that they are actually a single gene, Avr4/6, located near the 24-kb region. Avr4/6 encodes a secreted protein of 123 amino acids with an RXLR-dEER protein translocation motif. Transient expression of Avr4/6 in soybean leaves revealed that its gene product could trigger a hypersensitive response (HR) in the presence of either Rps4 or Rps6. Silencing Avr4/6 in P. sojae stable transformants abolished the avirulence phenotype exhibited on both Rps4 and Rps6 soybean cultivars. The N terminus of Avr4/6, including the dEER motif, is sufficient to trigger Rps4-dependent HR while its C terminus is sufficient to trigger Rps6-mediated HR. Compared with alleles from avirulent races, alleles of Avr4/6 from virulent races possess nucleotide substitutions in the 5′ untranslated region of the gene but not in the protein-coding region.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1405-1405 ◽  
Author(s):  
J. Staniulis ◽  
J. Stankiene ◽  
K. Sasnauskas ◽  
A. Dargeviciute

Plum pox (sharka) disease caused by plum pox potyvirus (PPV) is considered the most important virus disease of stone fruit trees in Europe and the Mediterranean region. Nearly all those countries that produce stone fruits are affected (3). The causal virus of the disease is a European Plant Protection Organization A2 quarantine pathogen. Symptoms of leaf mottling, diffuse chlorotic spots, rings, and vein banding of varied intensity characteristic for plum pox virus infection were observed in the plum (Prunus domestica) orchard tree collection of the Lithuanian Institute of Horticulture in Babtai in 1996. Presence of this virus in the diseased trees was confirmed by double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) with kits from BIOREBA (Reinach, Switzerland) and by polyclonal antibodies raised against a Moldavian isolate of PPV courtesy of T. D. Verderevskaya (Institute of Horticulture, Kishinev, Moldova). ELISAs with both sources of antiserum were positive for presence of PPV. Electron microscopy revealed the presence of potyvirus-like particles averaging 770 nm in extracts of mechanically inoculated plants of Chenopodium foetidum (chlorotic LL [local lesions]) and Pisum sativum cvs. Rainiai and Citron (mottling). For molecular diagnosis and characterization of this isolate, PPV-971, reverse transcription-polymerase chain reaction (RT-PCR) was employed. Total RNA from the leaves of infected pea was isolated as described (2). High molecular weight RNA selectively precipitated with 2 M lithium chloride was used for RT-PCR amplification of the coat protein encoding sequence by use of specific primers complementary to 5′ and 3′ parts of PPV coat protein L1 (GenBank accession no. X81081). Amino acid sequence comparison with GenBank data indicated 98.2% similarity with coat protein of PPV potyvirus isolated by E. Mais et al. (accession no. X81083) and 97.3% with PPV strain Rankovic (1).The specific DNA fragment, corresponding to predicted coat protein sequence size, was cloned into Escherichia coli pUC57 for DNA sequencing. Expression of the cloned sequence in bacteria and yeast expression systems is under investigation. The presence of PPV in plum trees in the 9-year-old collection at Babtai was confirmed by DAS-ELISA in 1997 and again in 1998. PPV was then detected in 20% of symptomatic trees of three cultivars. The Lithuanian PPV isolate reacted positively with “universal” Mab.5b and with a Mab (Mab.4DG5) specific for PPV-D. No reaction was observed with Mabs specific for PPV-M (Mab.AL), PPV-C (Mab.AC and Mab.TUV), and PPV-El Amar (Mab.EA24). PPV-971 seems to be a typical member of the less aggressive Dideron strain cluster of PPV (D. Boscia, personal communication). This is the first report of PPV in Lithuania and confirms the necessity for continuing the precautionary measures established in this country for indexing of nursery plum trees used for graft propagation. References: (1) S. Lain et al. Virus Res. 13:157, 1989. (2) J. Logemann et al. Anal. Biochem. 163:16, 1987. (3) M. Nemeth. OEPP/EPPO Bull. 24:525, 1994.


Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 872-872 ◽  
Author(s):  
D. H. Lambert ◽  
L. Levy ◽  
V. A. Mavrodieva ◽  
S. B. Johnson ◽  
M. J. Babcock ◽  
...  

Potato mop-top virus (PMTV) is a tripartite pomovirus vectored by the powdery scab plasmodiophoromycete Spongospora subterranea pv. subterranea (1). PMTV occurs on potato (Solanum tuberosum) in Europe, the Andes, Asia, and Canada. Internal necrotic arc and fleck tuber symptoms (“spraing”) may reduce commercial acceptance of some cultivars (3). PMTV symptoms were discovered in ‘Shepody’ tubers at the Aroostook Research Farm, Presque Isle, ME in May 2002 and subsequently in ‘Russet Burbank’ tubers in commercial storage from the 2001 Maine crop. Symptomatic tubers exhibited single or multiple concentric necrotic arcs that were partial or complete, but exhibited no distinct external symptoms. The presence of PMTV in eight ‘Shepody’ tubers was indicated by positive enzyme-linked immunosorbent assay (ELISA; Adgen, Ltd., Auchincruive, Ayr, Scotland) and confirmed by reverse transcription polymerase chain reaction (RT-PCR). ‘Russet Burbank’ potatoes were visually diagnosed, and the corresponding halves of 128 symptomatic tubers were forwarded to the University of Maine and APHIS (Beltsville, MD). Of these, ELISA readings in Maine were strongly positive (>3 × background) for 88, ambiguous (1.5-3 × background) for 13, and negative for 27. Subsamples from these three categories were positive by PCR in 17 of 17, 9 of 9, and 12 of 14 cases, respectively. A similar rating, positive or ambiguous, in ELISA testing was identical for all but one case at Beltsville. Confirmation of PMTV required PCR testing, resulting in a characteristic PCR product of 401 bp that was generated from the coat protein coding region on RNA 2 (2) using the primer pair PMTV 1 5′-GCAGCCGTCGAGAATAGATA-3′ (RNA nucleotides 316–335) and PMTV 4 5′-GCGAGTTGATGTGCC ACATT-3′ (complementary to RNA 2 nucleotides 716–697). An immunocapture RT-PCR using this primer set and the coating antibody from the Adgen ELISA kit was also successful in detecting PMTV. In separate reactions, a second product of 646 bp was generated from the triple gene block on RNA 3 (4) using the primer pair PMTV 5 5′-GGTGAACACGAGGACAAGGT-3′ (RNA 3 nucleotides 1417–1436) and PMTV 7 5′-AACAGTCCGGTCTTGTGAAC-3′ (complementary to RNA 3 nucleotides 2063–2044). The sequence of these products was 98 to 100% identical to PMTV published sequences. The discovery of this virus will result in adjustments to U.S. and Canadian seed potato certification standards and symptom characterization for common North American cultivars. References: (1) R. A. C. Jones and B. D. Harrison. Ann. Appl. Biol 63:1, 1969. (2) S. Kashiwazak et al. Virology 206:701, 1995. (3) M. Sandgren et al. Am. J. Potato Res. 79:205, 2002. (4) K. P. Scott et al. J. Gen. Virol.75:3561, 1994.


Plant Disease ◽  
2007 ◽  
Vol 91 (1) ◽  
pp. 18-23 ◽  
Author(s):  
V. D. Damsteegt ◽  
R. Scorza ◽  
A. L. Stone ◽  
W. L. Schneider ◽  
K. Webb ◽  
...  

Plum pox (Sharka) is a serious virus disease of stone fruits caused by the Plum pox virus (PPV). To determine which species could function as potential hosts and virus reservoirs, we used aphid transmission and bud or chip grafting to evaluate the susceptibility of commercial, ornamental, and wild Prunus species to isolates of PPV found in Pennsylvania, USA. Following inoculation, test trees were observed for symptoms, analyzed by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), back-assayed to healthy peach, and followed through at least four cold-induced dormancy (CID) cycles over 4 years. Thirty-one of 33 Prunus species and cultivars were systemically infected following aphid transmission. Systemic infection could not be detected in P. cerasus (sour cherry) and P. × ‘Snofozam’ (Snow Fountains) despite repeated aphid inoculation attempts. Following grafting of PPV-infected budwood, all 40 species and varieties became infected, although species differed in their susceptibility. Within most species, some individual plants remained PPV negative throughout the study despite repeated inoculations. Infection in some species could be detected only through quantitative reverse transcription (RT)-PCR. Most species displayed clear symptoms, were highly positive by ELISA and RT-PCR, and could be back-inoculated into peach seedlings following CID. Our results indicate that a wide range of native and ornamental Prunus species are susceptible to U.S. isolates of PPV-D.


Sign in / Sign up

Export Citation Format

Share Document