Sporulation Capacity and Longevity of Puccinia horiana Teliospores in Infected Chrysanthemum Leaves

2013 ◽  
Vol 14 (1) ◽  
pp. 11 ◽  
Author(s):  
Morris R. Bonde ◽  
Cristi L. Palmer ◽  
Douglas G. Luster ◽  
Susan E. Nester ◽  
Jason M. Revell ◽  
...  

Puccinia horiana Henn., a quarantine-significant fungal pathogen and causal agent of chrysanthemum white rust (CWR), was first discovered in the United States in 1977 and later believed to have been eradicated. Recently, however, the disease has sporadically reappeared in the northeastern US. Possible explanations for the reappearance include survival of the pathogen in the local environment, and reintroduction from other locations. To determine the possibility that the pathogen might be overwintering in the field, we undertook the study described here. Results from the study showed that P. horiana teliospores, imbedded in infected leaves, were capable of sporulating 2 weeks after inoculation, and this capacity continued until the leaf became necrotic and desiccated. This is the first report of the extreme susceptibility of P. horiana teliospores to leaf necrosis and desiccation and suggests that field infections following winter are unlikely to originate from teliospores. Teliospore germination on excised leaves was shown to be inhibited by light. Accepted for publication 3 April 2013. Published 23 August 2013.

2014 ◽  
Vol 15 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Morris R. Bonde ◽  
Cristi L. Palmer ◽  
Douglas G. Luster ◽  
Susan E. Nester ◽  
Jason M. Revell ◽  
...  

Puccinia horiana Henn. is a quarantine-significant fungal pathogen and causal agent of chrysanthemum white rust (CWR). The pathogen and disease were first discovered in the United States in 1977 and quickly eradicated. During the early 1990s, CWR reemerged in several instances, but in each instance was declared eradicated. However, since approximately 2004 CWR has reappeared at an accelerated frequency. This has suggested that either P. horiana is entering the country more frequently from foreign locations or that P. horiana is now established in the field, implying that spores are capable of surviving winter conditions in plant debris or soil. As a result of the possibility that the pathogen has become established in the United States, we initiated several lines of research. The objectives of the study reported here were: (i) develop a better and more sensitive method to measure teliospore longevity; and (ii) determine if the pathogen is able to survive northeastern winters as viable teliospores. Results from the study showed that teliospores survived in the greenhouse a maximum of 28 days in dry soil and 7 days in moist soil. In a growth chamber simulating winter temperature conditions in the northeastern United States, teliospores survived a maximum of 35 days. It was concluded that P. horiana teliospores are not able to survive through typical northeastern U.S. winters. Accepted for publication 9 January 2014. Published 18 March 2014.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1381-1381 ◽  
Author(s):  
G. O'Keefe ◽  
D. D. Davis

Chrysanthemum white rust (CWR) is a quarantine-significant pest in the United States (Title 7, Code of Federal Regulations, Part 319.37-2). The causal agent of CWR, Puccinia horiana Henn., is an autoecious, microcyclic rust that is pathogenic on chrysanthemum species (Chrysanthemum spp.) and close relatives within the family Asteraceae. CWR is indigenous to Japan, where it was first reported in 1895 (4). By the 1960s, CWR was found throughout Europe and later spread to Africa, Oceana, South America, and other parts of Asia. In North America, CWR was reported in Mexico and in the United States (New Jersey and Pennsylvania [1977], Oregon and Washington [1990], and California [1991]). Additional detections of CWR were later reported in 22 Pennsylvania counties (2004, 2006 to 2010) (3). These later Pennsylvania reports stated that eradication was attempted at some sites, but unconfirmed observations suggested that the rust pathogen might overwinter in volunteer plants (3). Since “CWR is known to overwinter in Europe where chrysanthemums overwinter (average minimum temperatures ranging from –10°F to 10°F)” (2), the unconfirmed Pennsylvania observations prompted us to determine if P. horiana can overwinter in Pennsylvania. During October 2010, we identified CWR on perennial mums planted at six outdoor garden locations in University Park, PA. Symptomatic plants were quarantined and eradication attempted. Eradicated sites were routinely surveyed and CWR confirmed in July 2011 on volunteer plants at two of the originally infested sites. An additional outdoor garden site with CWR was observed in State College, PA, during October 2011 and eradication attempted. The three infested sites were surveyed throughout the fall and winter of 2011 to 2012. During February 2012, two asymptomatic volunteer plants arising from root pieces were collected from each of the three sites. Each sample was washed with tap water to remove excess soil, examined morphologically, surface sterilized with 10% bleach, and divided into two subsamples. One subsample from each site was divided into crown and root portions and DNA extracted using a Qiagen DNeasy Plant Mini Kit. Molecular analysis was performed using modifications of published primers ITS 5 and Rust1 (1,4). Puccinia horiana was detected in plant roots from one site and in plant crowns from two sites. The remaining two subsamples from each site were transplanted into sterilized potting soil and placed in a clean controlled environment chamber at 18°C and 85% relative humidity (RH). After 6 weeks, six actively growing plants were transferred to a second clean controlled environment chamber at 17°C and 90 to 100% RH. On 6 April 2012, CWR symptoms and signs were confirmed morphologically on two plants that had been removed from one site. On 19 April 2012, CWR signs and symptoms were confirmed morphologically and by molecular analysis on leaves of volunteer plants at one University Park site. DNA extractions were sequenced and shared a 100% maximum identity to a known P. horiana accession (EU816920.1) in GenBank. To our knowledge, this is the first confirmed report of P. horiana overwintering in Pennsylvania. References: (1) H. Alaei et al. Mycol. Res. 113:668, 2009. (2) Anon. Chrysanthemum White Rust Bulletin, Syngenta Flowers Inc., Gilroy, CA, 2010. (3) S. Kim et al. Phytopathology 101:S91, 2011. (4) K. Pedley. Plant Dis. 93:1252, 2009.


Plant Disease ◽  
2003 ◽  
Vol 87 (5) ◽  
pp. 602-602
Author(s):  
A. P. Keinath ◽  
A. E. Strand ◽  
R. D. Hamilton

Seabeach amaranth (Amaranthus pumilus Raf.), a threatened annual marine plant, is a primary colonizer of the windward side of Atlantic coastal dunes. It serves an important ecological role in dune accumulation and stabilization. Because Hurricane Floyd eliminated all native seabeach amaranth in South Carolina in 1999, experimental reestablishment plantings have been attempted. In August 2000, seabeach amaranth on Dewees and Cape Island in Charleston County, Huntington Beach in Georgetown County, and Otter Island in Colleton County, South Carolina were stunted and senesced prematurely. Leaves on affected plants were only one-half of the normal size and internodes were shortened. Most plants (>90%) at each location were affected. Diseased leaves had small, pale green-to-tan spots above hypophyllous pustules that contained numerous, dry, hyaline, subglobose conidia. Conidia measured 13.5 (10 to 17) × 15.0 (11 to 18) μm. Based on morphological characters and the host, the pathogen was identified as Albugo bliti (Biv.-Bern.) Kuntze (1,2). No oospores were observed. Diseased plants were collected from Dewees and Otter Islands and kept frozen for use as a source of inoculum. Six A. pumilus plants each of six Plant Introductions (PI), 553080 through 553085, that had been grown from seed were sprayed with a suspension of 4.7 × 105 conidia per ml. One plant of each PI was sprayed with sterile distilled water as a noninoculated control. All plants were placed in a humidity chamber for 48 h and then moved to a greenhouse bench. Thirteen days after inoculation, all inoculated plants had pustules of white rust. Diseased plants had a mean of 42 pustules per plant and PI's did not differ in susceptibility. Five of six noninoculated plants also had white rust pustules, but only a mean of 2.3 (range 1 to 5) pustules each. White rust likely appeared on noninoculated plants because plants were spaced closely together in the chamber. Pustules and conidia on inoculated plants were identical to those on plants collected originally. Albugo bliti has been reported on 19 other Amaranthus species (1), but to our knowledge, this is the first report of white rust on seabeach amaranth in the United States. White rust reduced the biomass of infected plants and, hence, their ability to trap sand. White rust was not observed on subsequent plantings in 2001 and 2002 at any location. References: (1) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory, On-line publication. ARS USDA, 2002. (2) G. W. Wilson. Bull. Torrey Bot. Club 34:61, 1907.


2015 ◽  
Vol 105 (1) ◽  
pp. 91-98 ◽  
Author(s):  
M. R. Bonde ◽  
C. A. Murphy ◽  
G. R. Bauchan ◽  
D. G. Luster ◽  
C. L. Palmer ◽  
...  

Puccinia horiana, causal agent of the disease commonly known as chrysanthemum white rust (CWR), is a quarantine-significant fungal pathogen of chrysanthemum in the United States and indigenous to Asia. The pathogen was believed to have been eradicated in the United States but recently reappeared on several occasions in northeastern United States. The objective of the study presented here was to determine whether P. horiana could systemically infect chrysanthemum plants, thus providing a means of survival through winters. Scanning and transmission electron microscopy revealed the development of P. horiana on the surface and within leaves, stems, or crowns of inoculated chrysanthemum plants artificially exposed to northeastern U.S. winter temperatures. P. horiana penetrated leaves directly through the cuticle and then colonized the mesophyll tissue both inter- and intracellularly. An electron-dense material formed at the interface between fungal and host mesophyll cells, suggesting that the pathogen adhered to the plant cells. P. horiana appeared to penetrate mesophyll cell walls by enzymatic digestion, as indicated by the absence of deformation lines in host cell walls at penetration sites. The fungus was common in vascular tissue within the infected crown, often nearly replacing the entire contents of tracheid cell walls. P. horiana frequently passed from one tracheid cell to an adjacent tracheid cell by penetration either through pit pairs or nonpitted areas of the cell walls. Individual, presumed, fungal cells in mature tracheid cells of the crown and stems arising from infected crowns suggested that the pathogen might have been moving at least partially by means of the transpiration stream. The demonstration that chrysanthemum plants can be systemically infected by P. horiana suggests that additional disease control measures are required to effectively control CWR.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 450-450 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
M. L. Gullino

Cineraria maritima L. (synonym Senecio cineraria DC.), commonly known as dusty-miller, is grown in Italy for landscape use in parks and gardens. In the spring of 2001, severe outbreaks of a previously unknown disease were observed in commercial farms located in northern Italy. Leaves of infected plants showed several sori on the abaxial surface, progressing to the adaxial surface, and often in the interveinal areas. On the adaxial surface of leaves, chlorotic areas developed and eventually turned brown. Severely infected leaves wilted, but remained attached to the stem. Signs of the fungus were present as whitish and catenulate sporangia emerging from the sori. Sporangia, organized in chains, had an average diameter of 20.5 × 26.5 μm. On the basis of the microscopic observations, the causal agent of the disease was identified as Albugo tragopogonis. Pathogenicity was confirmed by inoculating leaves of healthy C. maritima plants with a sporangial suspension (5 × 102 sporangia per ml) obtained from infected plants. Noninoculated plants served as a control. Plants were kept covered with plastic bags for 72 h and maintained at 15°C. After 10 days, typical symptoms of white rust developed on inoculated plants starting from the basal leaves. Within 30 days, affected leaves were completely wilted. Microscopic examination of sporangia within sori verified the pathogen to be A. tragopogonis. No symptoms developed on the control plants. A. tragopogonis has been reported as the causal agent of white rust on several species belonging to the genus Senecio in the United States (1). In New Zealand, the presence of A. tragopogonis was reported on the genus Cineraria in 1959 (2). To our knowledge, this is the first report of the presence of white rust on Cineraria maritima in Italy. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (2) J. M. Dingley. N. Z. J. Agric. Res. 2:380, 1959.


2010 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
F. Mathew ◽  
B. Kirkeide ◽  
T. Gulya ◽  
S. Markell

Widespread infection of charcoal rot was observed in a commercial sunflower field in Minnesota in September 2009. Based on morphology, isolates were identified as F. sporotrichioides and F. acuminatum. Koch's postulates demonstrated pathogencity of both species. To our knowledge, this is the first report of F. sporotrichoides and F. acuminatum causing disease on Helianthus annuus L. in the United States. Accepted for publication 23 August 2010. Published 15 September 2010.


2008 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Rayapati A. Naidu ◽  
Gandhi Karthikeyan

The ornamental Chinese wisteria (Wisteria sinensis) is a woody perennial grown for its flowering habit in home gardens and landscape settings. In this brief, the occurrence of Wisteria vein mosaic virus (WVMV) was reported for the first time in Chinese wisteria in the United States of America. Accepted for publication 18 June 2008. Published 18 August 2008.


2011 ◽  
Vol 12 (1) ◽  
pp. 34 ◽  
Author(s):  
Craig G. Webster ◽  
William W. Turechek ◽  
H. Charles Mellinger ◽  
Galen Frantz ◽  
Nancy Roe ◽  
...  

To the best of our knowledge, this is the first report of GRSV infecting tomatillo and eggplant, and it is the first report of GRSV infecting pepper in the United States. This first identification of GRSV-infected crop plants in commercial fields in Palm Beach and Manatee Counties demonstrates the continuing geographic spread of the virus into additional vegetable production areas of Florida. This information indicates that a wide range of solanaceous plants is likely to be infected by this emerging viral pathogen in Florida and beyond. Accepted for publication 27 June 2011. Published 25 July 2011.


Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 677 ◽  
Author(s):  
M. Kunta ◽  
J.-W. Park ◽  
P. Vedasharan ◽  
J. V. da Graça ◽  
M. D. Terry

Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Xiao Hong Lu ◽  
R. Michael Davis ◽  
S. Livingston ◽  
J. Nunez ◽  
Jianjun J. Hao

The identity of 172 isolates of Pythium spp. from cavity spot lesions on carrot produced in California and Michigan was determined, and their sensitivity to three fungicides was examined. Pythium violae accounted for 85% of California isolates, with P. irregulare, P. dissotocum (the first report as a carrot pathogen in the United States), P. ultimum, and P. sulcatum making the balance. P. sulcatum, P. sylvaticum, and P. intermedium were the most commonly recovered (85%) species in Michigan; others from Michigan included P. intermedium, P. irregulare, and an unclassified strain, M2-05. On fungicide-amended media, 93% of isolates were sensitive to mefenoxam (inhibition of mycelial growth was >60% at 10 μg active ingredient [a.i.]/ml); however, two of five isolates of P. irregulare from California were highly resistant (≤60% inhibition at 100 μg a.i./ml); about half of the isolates of P. intermedium and P. sylvaticum and a single isolate of P. violae were highly or intermediately resistant to mefenoxam (>60% inhibition at 100 μg a.i./ml, or ≤60% inhibition at 10 μg a.i./ml). P. dissotocum, P. irregulare, P. sulcatum, M2-05, and three of seven isolates of P. intermedium were insensitive to fluopicolide (effective concentrations for 50% growth inhibition [EC50] were >50 μg a.i./ml), while P. sylvaticum, P. ultimum, P. violae, and some isolates in P. intermedium were sensitive (EC50 < 1 μg a.i./ml). All isolates were sensitive to zoxamide (EC50 < 1 μg a.i./ml). Sensitivity baselines of P. violae to zoxamide and fluopicolide were established.


Sign in / Sign up

Export Citation Format

Share Document