scholarly journals Genome Resources for the Ex-type of Phytophthora citricola, and well-authenticated isolates of P. hibernalis, P. nicotianae and P. syringae

2021 ◽  
Author(s):  
Subodh K. Srivastava ◽  
Leandra M. Knight ◽  
Mark K. Nakhla ◽  
Z. Gloria Abad

Phytophthora is one of the most important genera of plant pathogens with many members causing high economic losses world-wide. To build robust molecular identification systems, it is very important to have information from well-authenticated specimens and in preference the ex-type specimens. The reference genomes of well-authenticated specimens form a critical foundation for genetics, biological research, and diagnostic applications. In this study, we describe four draft Phytophthora genomes resources for the Ex-type of P. citricola BL34 (P0716 WPC) (118 contigs for 50 Mb), and well-authenticated specimens of P. syringae BL57G (P10330 WPC) (591 contigs for 75 Mb), P. hibernalis BL41G (P3822 WPC) (404 contigs for 84 Mb), and P. nicotianae BL162 (P6303 WPC) (3984 contigs for 108 Mb) generated with MinION long-read High-Throughput Sequencing (HTS) technology (Oxford Nanopore Technologies, ONT). Using the quality reads we assembled high coverage genomes of P. citricola with 291X coverage and 16,662 annotated genes; P. nicotianae with 205X coverage and 29,271 annotated genes; P. syringae with 76X coverage and 23,331 annotated genes, and P. hibernalis with 42X coverage and 21,762 annotated genes. With the availability of genomes sequences and its annotations, we predict that these draft genomes will be accommodating for various basic and applied research including diagnostics to protect global agriculture.

2020 ◽  
Vol 10 (7) ◽  
pp. 2179-2183 ◽  
Author(s):  
Stefan Prost ◽  
Malte Petersen ◽  
Martin Grethlein ◽  
Sarah Joy Hahn ◽  
Nina Kuschik-Maczollek ◽  
...  

Ever decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university master’s course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behavior. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published Hi-C data. The use of ∼35x nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using the Hi-C data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 96.1% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly. We present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university master’s course. The use of ∼35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.


2018 ◽  
Vol 35 (15) ◽  
pp. 2674-2676 ◽  
Author(s):  
Shubham Chandak ◽  
Kedar Tatwawadi ◽  
Idoia Ochoa ◽  
Mikel Hernaez ◽  
Tsachy Weissman

Abstract Motivation High-Throughput Sequencing technologies produce huge amounts of data in the form of short genomic reads, associated quality values and read identifiers. Because of the significant structure present in these FASTQ datasets, general-purpose compressors are unable to completely exploit much of the inherent redundancy. Although there has been a lot of work on designing FASTQ compressors, most of them lack in support of one or more crucial properties, such as support for variable length reads, scalability to high coverage datasets, pairing-preserving compression and lossless compression. Results In this work, we propose SPRING, a reference-free compressor for FASTQ files. SPRING supports a wide variety of compression modes and features, including lossless compression, pairing-preserving compression, lossy compression of quality values, long read compression and random access. SPRING achieves substantially better compression than existing tools, for example, SPRING compresses 195 GB of 25× whole genome human FASTQ from Illumina’s NovaSeq sequencer to less than 7 GB, around 1.6× smaller than previous state-of-the-art FASTQ compressors. SPRING achieves this improvement while using comparable computational resources. Availability and implementation SPRING can be downloaded from https://github.com/shubhamchandak94/SPRING. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 71 (18) ◽  
pp. 5313-5322 ◽  
Author(s):  
Kathryn Dumschott ◽  
Maximilian H-W Schmidt ◽  
Harmeet Singh Chawla ◽  
Rod Snowdon ◽  
Björn Usadel

Abstract DNA sequencing was dominated by Sanger’s chain termination method until the mid-2000s, when it was progressively supplanted by new sequencing technologies that can generate much larger quantities of data in a shorter time. At the forefront of these developments, long-read sequencing technologies (third-generation sequencing) can produce reads that are several kilobases in length. This greatly improves the accuracy of genome assemblies by spanning the highly repetitive segments that cause difficulty for second-generation short-read technologies. Third-generation sequencing is especially appealing for plant genomes, which can be extremely large with long stretches of highly repetitive DNA. Until recently, the low basecalling accuracy of third-generation technologies meant that accurate genome assembly required expensive, high-coverage sequencing followed by computational analysis to correct for errors. However, today’s long-read technologies are more accurate and less expensive, making them the method of choice for the assembly of complex genomes. Oxford Nanopore Technologies (ONT), a third-generation platform for the sequencing of native DNA strands, is particularly suitable for the generation of high-quality assemblies of highly repetitive plant genomes. Here we discuss the benefits of ONT, especially for the plant science community, and describe the issues that remain to be addressed when using ONT for plant genome sequencing.


2020 ◽  
Author(s):  
Ferenc Olasz ◽  
Dóra Tombácz ◽  
Gábor Torma ◽  
Zsolt Csabai ◽  
Norbert Moldován ◽  
...  

AbstractAfrican swine fever virus (ASFV) is an important animal pathogen causing substantial economic losses in the swine industry globally. At present, little is known about the molecular biology of ASFV, including its transcriptome organization. In this study, we applied cutting-edge sequencing approaches, namely the Illumina short-read sequencing (SRS) and the Oxford Nanopore Technologies long-read sequencing (LRS) techniques, together with several library preparation chemistries to analyze the ASFV dynamic transcriptome. SRS can generate a large amount of high-precision sequencing reads, but it is inefficient for identifying long RNA molecules, transcript isoforms and overlapping transcripts. LRS can overcome these limitations, but this approach also has shortcomings, such as its high error rate and the low coverage. Amplification-based LRS techniques produce relatively high read counts but also high levels of spurious transcripts, whereas the non-amplified cDNA and direct RNA sequencing techniques are more precise but achieve lower throughput. The drawbacks of the various technologies can be circumvented by the combined use of these approaches.


2020 ◽  
Author(s):  
Stefan Prost ◽  
Malte Petersen ◽  
Martin Grethlein ◽  
Sarah Joy Hahn ◽  
Nina Kuschik-Maczollek ◽  
...  

AbstractBackgroundEver decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university Master’s course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behaviour. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published HiC data.FindingsThe use of nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using previously published HiC data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 95.8% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly.ConclusionWe present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university Master’s course. The use of ~35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.


2021 ◽  
Vol 9 (1) ◽  
pp. 188
Author(s):  
Edoardo Piombo ◽  
Ahmed Abdelfattah ◽  
Samir Droby ◽  
Michael Wisniewski ◽  
Davide Spadaro ◽  
...  

Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegetables, with a corresponding increase in economic losses caused by the introduction of transboundary plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding and shotgun metagenomics could be used to simultaneously detect all known pathogens and potentially new ones. This review aims to present the current status of high-throughput sequencing (HTS) diagnostics of fungal and bacterial plant pathogens, discuss the challenges that need to be addressed, and provide direction for the development of methods for the detection of a restricted number of related taxa (specific surveillance) or all of the microorganisms present in a sample (general surveillance). HTS techniques, particularly metabarcoding, could be useful for the surveillance of soilborne, seedborne and airborne pathogens, as well as for identifying new pathogens and determining the origin of outbreaks. Metabarcoding and shotgun metagenomics still suffer from low precision, but this issue can be limited by carefully choosing primers and bioinformatic algorithms. Advances in bioinformatics will greatly accelerate the use of metagenomics to address critical aspects related to the detection and surveillance of plant pathogens in plant material and foodstuffs.


Author(s):  
Cheng Yee Tang ◽  
Rick Twee-Hee Ong

Abstract Summary Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing is widely used to genotype Mycobacterium tuberculosis complex in epidemiological studies for tracking tuberculosis transmission. Recent long-read sequencing technologies from Pacific Biosciences and Oxford Nanopore Technologies can produce reads that are long enough to cover the entire repeat regions in each MIRU-VNTR locus which was previously not possible using the short reads from Illumina high-throughput sequencing technologies. We thus developed MIRUReader for MIRU-VNTR typing directly from long sequence reads. Availability and implementation Source code and documentation for MIRUReader program is freely available at https://github.com/phglab/MIRUReader. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Author(s):  
Noah Spies ◽  
Justin M Zook ◽  
Marc Salit ◽  
Arend Sidow

Visualizing read alignments is the most effective way to validate candidate SVs with existing data. We present svviz, a sequencing read visualizer for structural variants (SVs) that sorts and displays only reads relevant to a candidate SV. svviz works by searching input bam(s) for potentially relevant reads, realigning them against the inferred sequence of the putative variant allele as well as the reference allele, and identifying reads that match one allele better than the other. Reads are assigned to the proper allele based on alignment score, read pair orientation and insert size. Separate views of the two alleles are then displayed in a scrollable web browser view, enabling a more intuitive visualization of each allele, compared to the single reference genome-based view common to most current read browsers. The web view facilitates examining the evidence for or against a putative variant, estimating zygosity, visualizing affected genomic annotations, and manual refinement of breakpoints. An optional command-line-only interface allows summary statistics and graphics to be exported directly to standard graphics file formats. svviz is open source and freely available from github, and requires as input only structural variant coordinates (called using any other software package), reads in bam format, and a reference genome. Reads from any high-throughput sequencing platform are supported, including Illumina short-read, mate-pair, synthetic long-read (assembled), Pacific Biosciences, and Oxford Nanopore. svviz is open source and freely available from https://github.com/svviz/svviz. 


2021 ◽  
Author(s):  
Graham S Sellers ◽  
Daniel C Jeffares ◽  
Bex Lawson ◽  
Tom Prior ◽  
David H Lunt

Root-knot nematodes (RKN; genus Meloidogyne) are polyphagous plant pathogens of great economic importance to agriculturalists globally. These species are small, diverse, and can be challenging for accurate taxonomic identification. Many of the most important crop pests confound analysis with simple genetic marker loci as they are polyploids of likely hybrid origin. Here we take a low-coverage, long-read genome sequencing approach to characterisation of individual root-knot nematodes. We demonstrate library preparation for Oxford Nanopore Technologies Flongle sequencing of low input DNA from individual juveniles and immature females, multiplexing up to twelve samples per flow cell. Taxonomic identification with Kraken 2 (a k-mer-based taxonomic assignment tool) is shown to reliably identify individual nematodes to species level, even within the very closely related Meloidogyne incognita group. Our approach forms a robust, low-cost, and scalable method for accurate RKN species diagnostics.


Author(s):  
Kristoffer Sahlin ◽  
Marisa Lim ◽  
Stefan Prost

Third generation sequencing technologies, such as Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), have gained popularity over the last years. These platforms can generate millions of long read sequences. This is not only advantageous for genome sequencing projects, but also for amplicon-based high-throughput sequencing experiments, such as DNA barcoding. However, the relatively high error rates associated with these technologies still pose challenges for generating high quality consensus sequences. Here we present NGSpeciesID, a program which can generate highly accurate consensus sequences from long-read amplicon sequencing technologies, including ONT and PacBio. The tool includes clustering of the reads to help filter out contaminants or reads with high error rates and employs polishing strategies specific to the appropriate sequencing platform. We show that NGSpeciesID produces consensus sequences with improved usability by minimizing preprocessing and software installation and scalability by enabling rapid processing of hundreds to thousands of samples, while maintaining similar consensus accuracy as current pipelines


Sign in / Sign up

Export Citation Format

Share Document