scholarly journals Multigenic System Controlling Viral Systemic Infection Determined by the Interactions Between Cucumber mosaic virus Genes and Quantitative Trait Loci of Soybean Cultivars

2011 ◽  
Vol 101 (5) ◽  
pp. 575-582 ◽  
Author(s):  
Shizen Ohnishi ◽  
Issei Echizenya ◽  
Eri Yoshimoto ◽  
Kim Boumin ◽  
Tsuyoshi Inukai ◽  
...  

Soybean ‘Harosoy’ is resistant to Cucumber mosaic virus soybean strain C (CMV-SC) and susceptible to CMV-S strain D (CMV-SD). Using enzyme-linked immunosorbent assay and Northern hybridization, we characterized the Harosoy resistance and found that CMV-SC did not spread systemically but was restricted to the inoculated leaves in Harosoy. Harosoy resistance was not controlled by either a dominant or recessive single gene. To dissect this system controlling long-distance movement of CMV in soybean, we constructed infectious cDNA clones of CMV-SC and CMV-SD. Using these constructs and the chimeric RNAs, we demonstrated that two viral components were required for systemic infection by the virus. The region including the entire 2b gene and the 5′ region of RNA3 (mainly the 5′ untranslated region) together were required. By quantitative trait locus (QTL) analysis using an F2 population and the F3 families derived from Harosoy and susceptible ‘Nemashirazu’, we also showed that at least three QTLs affected systemic infection of CMV in soybean. Our study on Harosoy resistance to CMV-SC revealed an interesting mechanism, in which multiple host and viral genes coordinately controlled viral systemic infection.

1999 ◽  
Vol 12 (7) ◽  
pp. 628-632 ◽  
Author(s):  
Sek-Man Wong ◽  
Sharon Swee-Chin Thio ◽  
Michael H. Shintaku ◽  
Peter Palukaitis

The M strain of cucumber mosaic virus (CMV) does not infect squash plants systemically and moves very slowly in inoculated cotyledons. Systemic infection and an increase in the rate of local movement were observed when amino acids 129 or 214 of the M-CMV capsid protein (CP) were altered to those present in the Fny strain of CMV. While the opposite alterations to the CP of Fny-CMV inhibited systemic infection of squash, they did not show the same effects on the rates of both cell-to-cell and long-distance movement. However, the ability of CMV to infect squash systemically was affected by the rate of cell-to-cell movement.


2021 ◽  
pp. 1-6
Author(s):  
Kyeong-Jae Heo ◽  
Boram Choi ◽  
Myung-Hwi Kim ◽  
Min-Jun Kwon ◽  
Young-Eun Cho ◽  
...  

Abstract Two aphid-transmitted RNA viruses, broad bean wilt virus 2 (BBWV2) and cucumber mosaic virus (CMV), are the most prevalent viruses in Korean pepper fields and cause chronic damage in pepper production. In this study, we employed a screening system for pathotype-specific resistance of pepper germplasm to BBWV2 and CMV by utilizing infectious cDNA clones of different pathotypes of the viruses (two BBWV2 strains and three CMV strains). We first examined pathogenic characteristics of the BBWV2 and CMV strains in various plant species and their phylogenetic positions in the virus population structures. We then screened 34 commercial pepper cultivars and seven accessions for resistance. While 21 pepper cultivars were resistant to CMV Fny strain, only two cultivars were resistant to CMV P1 strain. We also found only one cultivar partially resistant to BBWV2 RP1 strain. However, all tested commercial pepper cultivars were susceptible to the resistance-breaking CMV strain GTN (CMV-GTN) and BBWV2 severe strain PAP1 (BBWV2-PAP1), suggesting that breeding new cultivars resistant to these virus strains is necessary. Fortunately, we identified several pepper accessions that were resistant or partially resistant to CMV-GTN and one symptomless accession despite systemic infection with BBWV2-PAP1. These genetic resources will be useful in pepper breeding programs to deploy resistance to BBWV2 and CMV.


2004 ◽  
Vol 85 (7) ◽  
pp. 2087-2098 ◽  
Author(s):  
Noriko Suehiro ◽  
Tomohide Natsuaki ◽  
Tomoko Watanabe ◽  
Seiichi Okuda

Turnip mosaic virus (TuMV, genus Potyvirus, family Potyviridae) infects mainly cruciferous plants. Isolates Tu-3 and Tu-2R1 of TuMV exhibit different infection phenotypes in cabbage (Brassica oleracea L.) and Japanese radish (Raphanus sativus L.). Infectious full-length cDNA clones, pTuC and pTuR1, were constructed from isolates Tu-3 and Tu-2R1, respectively. Progeny virus derived from infections with pTuC induced systemic chlorotic and ringspot symptoms in infected cabbage, but no systemic infection in radish. Virus derived from plants infected with pTuR1 induced a mild chlorotic mottle in cabbage and infected radish systemically to induce mosaic symptoms. By exchanging genome fragments between the two virus isolates, the P3-coding region was shown to be responsible for systemic infection by TuMV and the symptoms it induces in cabbage and radish. Moreover, exchanges of smaller parts of the P3 region resulted in recombinants that induced complex infection phenotypes, especially the combination of pTuC-derived N-terminal sequence and pTuR1-derived C-terminal sequence. Analysis by tissue immunoblotting of the inoculated leaves showed that the distributions of P3-chimeric viruses differed from those of the parents, and that the origin of the P3 components affected not only virus accumulation, but also long-distance movement. These results suggest that the P3 protein is an important factor in the infection cycle of TuMV and in determining the host range of this and perhaps other potyviruses.


2001 ◽  
Vol 75 (19) ◽  
pp. 9114-9120 ◽  
Author(s):  
Tomas Canto ◽  
Peter Palukaitis

ABSTRACT Resistance to Cucumber mosaic virus (CMV) in tobacco lines transformed with CMV RNA 1 is characterized by reduced virus accumulation in the inoculated leaf, with specific suppression of accumulation of the homologous viral RNA 1, and by the absence of systemic infection. We show that the suppression of viral RNA 1 occurs in protoplasts from resistant transgenic plants and therefore is not due to a host response activated by the cell-to-cell spread of virus. In contrast, suppression of Tobacco rattle virus vectors carrying CMV RNA 1 sequences did not occur in protoplasts from resistant plants. Furthermore, steady-state levels of transgene mRNA 1 were higher in resistant than in susceptible lines. Thus, the data indicate that sequence homology is not sufficient to induce suppression. Grafting experiments using transgenic resistant or susceptible rootstocks and scions demonstrated that the resistance mechanism exhibited an additional barrier to phloem entry, preventing CMV from moving a long distance in resistant plants. On the other hand, virus from susceptible rootstocks could systemically infect grafted resistant scions via the phloem. Analysis of viral RNA accumulation in the infected scions showed that the mechanism that suppresses the accumulation of viral RNA 1 at the single-cell level was overcome. The data indicate that this transgene-mediated systemic resistance probably is not based on a posttranscriptional gene-silencing mechanism.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 802-802 ◽  
Author(s):  
S. G. P. Nameth ◽  
J. R. Fisher

Lobelia (Lobelia erinus L.) is a common herbaceous annual used in flower beds and hanging baskets. The plant blooms from early to late summer. In the summer of 2000, Lobelia plants expressing virus-like symptoms were collected from a greenhouse-based production site in Ohio. Affected plants expressed a mild leaf mosaic and stunting. Viral-associated dsRNA was isolated from 7 g of symptomatic leaf tissue (1). Four dsRNAs were observed at 3.9, 3.0, 2.25, and 1.05 kb indicating the presence of a Cucumovirus. A fifth dsRNA at 0.75 kb also was observed, consistent with the presence of a satellite RNA. Enzyme-linked immunosorbent assay (ELISA) analysis (Agdia, Inc., Elkhart, IN) of symptomatic Lobelia tissue confirmed the presence of Cucumber mosaic virus (CMV). A (S)CARNA-5 (-) cDNA clone (American Type Culture Collection #45124) was labeled with digoxygenin (DIG) as per the manufacturer's instructions (Genius II DIG-DNA Labeling Kit, Boehringer Mannheim) and used as a diagnostic probe to detect this satellite RNA. Northern hybridization confirmed the identity of the satellite RNA (2). This is the first report of any satellite RNA associated with a virus infection in Lobelia and the first report of CMV in this host in Ohio. References: (1) J. R. Fisher and S. G. P. Nameth. HortScience 35:230–234, 2000. (2) R. A. Valverde et.al. Plant Dis. 74:255–258, 1990.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 331-336 ◽  
Author(s):  
Jongkit Masiri ◽  
Nubia V. Velasquez ◽  
John F. Murphy

Cucumber mosaic virus Fast New York strain (CMV-Fny) containing a mutated 2b protein (CMV-FnyΔ2b) was evaluated for the ability to infect ‘Calwonder’ bell pepper (Capsicum annuum) plants in comparative tests with the parent virus, CMV-Fny. Plants inoculated with CMV-FnyΔ2b did not develop local or systemic symptoms of infection, whereas CMV-Fny-infected plants developed systemic chlorosis by 7 days post inoculation (dpi), followed by mosaic and leaf deformation. Virus accumulation, determined by enzyme-linked immunosorbent assay (ELISA), revealed that CMV-FnyΔ2b accumulated in inoculated Calwonder leaves and inconsistently infected some noninoculated leaves at a low titer but was not detected in the youngest, noninoculated leaves. Immuno-tissue blot tests did not detect CMV-FnyΔ2b in the stems of infected plants, whereas CMV-Fny accumulated throughout the length of the stems of inoculated plants. In two experiments, protoplasts were isolated from Calwonder leaves, inoculated with viral RNAs of CMV-Fny or CMV-FnyΔ2b, and tested by ELISA for infection. In both experiments, less CMV-FnyΔ2b than CMV-Fny accumulated in protoplasts. These results suggest that the CMV 2b protein is needed for systemic infection of Calwonder pepper plants and for accumulation of the virus in inoculated protoplasts.


2019 ◽  
Vol 109 (8) ◽  
pp. 1475-1480 ◽  
Author(s):  
Takehiro Ohki ◽  
Takahide Sasaya ◽  
Tetsuo Maoka

Wheat yellow mosaic virus (WYMV) belongs to the genus Bymovirus in the family Potyviridae and has a bipartite genome (RNA1 and RNA2). WYMV in Japan is classified into three pathotypes (I to III) based on its pathogenicity to wheat cultivars. Among these three, pathotypes I and II are discriminated by their pathogenicity to the wheat cultivar Fukuho; pathotype I infects Fukuho but pathotype II does not. In the present study, the genomic regions that are involved in such pathogenicity were examined using infectious viral cDNA clones of pathotypes I and II. Reassortant experiments between viral RNA1 and RNA2 revealed the presence of a viral factor related to pathogenicity in RNA1. A chimeric pathotype II virus harboring a cylindrical inclusion (CI) cistron from pathotype I facilitated systemic infection of Fukuho, indicating that CI protein is involved in pathogenicity. Furthermore, analysis of chimeric and site-directed mutants revealed that three amino acids at the N-terminal region of CI protein were involved in pathogenicity to Fukuho. On the other hand, at the single-cell level, pathotype II replicated in protoplasts of Fukuho similar to that of pathotype I virus. These data suggest that differential pathogenicity between pathotypes I and II was considered to depend on the ability of cell-to-cell or long-distance viral movement, in which CI protein is involved. To the best of our knowledge, this is the first report to show the involvement of the bymoviral CI protein in pathogenicity.


1998 ◽  
Vol 11 (2) ◽  
pp. 109-114 ◽  
Author(s):  
Jeremy R. Thompson ◽  
Fernando García-Arenal

The progress of infection of two cucumoviruses in cucumber plants was analyzed immunohistochemically. Strain Fny of cucumber mosaic virus (CMV, FFF) was found to infect cucumber tissues systemically by 6 days postinoculation (dpi), while a reassortant virus with RNAs 1+2 of Fny-CMV plus RNA3 of strain 1 of tomato aspermy virus (FFT) was unable to move long distance and infect cucumber plants systemically. FFF infection of the vasculature was detected 6 dpi in the phloem of a low percentage of both minor (order VII–VI) and major (order V–IV) veins. At 9 dpi, infection was detected in phloem cells of about 50% of both minor and major veins. FFT colonization of inoculated cotyledons followed a pathway similar to that of FFF, but virus accumulation was never detected in vascular tissues. In minor or major veins, FFT infection was arrested at the bundle sheath (BS), and at 9 dpi was not detected in intermediary or other phloem cells. Thus, our data indicate that the BS-phloem interface is a boundary for the systemic movement of these viruses in cucumber, and provide evidence of a functional difference between the plasmodesmata connecting mesophyll cells, as well as mesophyll and BS cells, which allow the movement of both FFF and FFT, from the plasmodesmata connecting BS and phloem, which allow movement of FFF but not of FFT.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 542-544
Author(s):  
R. Pokorný ◽  
M. Porubová

Under greenhouse conditions 12 maize hybrids derived from crosses of four resistant lines with several lines of different level of susceptibility were evaluated for resistance to Czech isolate of Sugarcane mosaic virus (SCMV). These hybrids were not fully resistant to isolate of SCMV, but the symptoms on their newly growing leaves usually developed 1 to 3 weeks later in comparison with particular susceptible line, the course of infection was significantly slower and rate of infection lower. As for mechanisms of resistance, the presence of SCMV was detected by ELISA in inoculated leaves both of resistant and susceptible lines, but virus was detected 7 days later in resistant line. Systemic infection developed only in susceptible lines. These results indicate restriction of viral long distance movement in the resistant line.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


Sign in / Sign up

Export Citation Format

Share Document