scholarly journals Alpha-subunit of the Chloroplast ATP Synthase of Tomato Reinforces the Resistance to Grey Mold and Broad-spectrum Resistance in Transgenic Tobacco

2020 ◽  
Author(s):  
Chao Gong ◽  
Mozhen Cheng ◽  
Jingfu Li ◽  
Hongyu Chen ◽  
Zhenzhu Zhang ◽  
...  

Chloroplast ATP synthase (cpATPase) is responsible for ATP production during photosynthesis. Our previous studies showed the cpATPase CF1 alpha subunit (AtpA) is a key protein involved in Clonostachys rosea (C. rosea)-induced resistance to the fungus Botrytis cinerea (B. cinerea) in tomato. Here, we show the expression level of tomato’s cpATPase CF1 alpha subunit gene (atpA) was up-regulated by B. cinerea and C. rosea. The tomato atpA gene was then isolated, and transgenic tobacco lines were obtained. Compared with untransformed plants, the atpA-overexpressing tobacco showed an increased resistance to B. cinerea, characterized by reduced disease incidence, defense-associated hypersensitive response (HR)-like reactions, balanced reactive oxygen species, alleviated damage to chloroplast ultra-structure of leaf cell, elevated levels of ATP content and cpATPase activity, enhanced expression of carbon metabolism-, photosynthesis-, and defense-related genes. Incremental Ca2+ efflux and steady H+ efflux were observed in transgenic tobacco after their inoculation with B. cinerea. Additionally, overexpression of atpA gene conferred enhanced tolerance to salinity and resistance to the fungus Cladosporium fulvum. Thus, the α subunit of cpATPase is a key regulator that links signaling to cellular redox homeostasis, ATP biosynthesis, and gene expression of resistance traits to modulate immunity to pathogen infection, in the process providing broad-spectrum resistance in plants.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan F. Montecchia ◽  
Mónica I. Fass ◽  
Ignacio Cerrudo ◽  
Facundo J. Quiroz ◽  
Salvador Nicosia ◽  
...  

AbstractSunflower Verticillium Wilt and Leaf Mottle (SVW), caused by Verticillium dahliae (Kleb.; Vd), is a soil-borne disease affecting sunflower worldwide. A single dominant locus, known as V1, was formerly effective in controlling North-American Vd races, whereas races from Argentina, Europe and an emerging race from USA overcome its resistance. This emphasizes the need for identifying broad-spectrum genetic resistance (BSR) sources. Here we characterize two sunflower mapping populations (MPs) for SVW resistance: a biparental MP and the association MP from the National Institute of Agricultural Technology (INTA), under field growing conditions. Nine field-trials (FTs) were conducted in highly infested fields in the most SVW-affected region of Argentina. Several disease descriptors (DDs), including incidence and severity, were scored across four phenological stages. Generalized linear models were fitted according to the nature of each variable, adjusting mean phenotypes for inbred lines across and within FTs. Comparison of these responses allowed the identification of novel BSR sources. Furthermore, we present the first report of SVW resistance heritability, with estimates ranging from 35 to 45% for DDs related to disease incidence and severity, respectively. This study constitutes the largest SVW resistance characterization reported to date in sunflower, identifying valuable genetic resources for BSR-breeding to cope with a pathogen of increasing importance worldwide.


Biochemistry ◽  
2000 ◽  
Vol 39 (45) ◽  
pp. 13781-13787 ◽  
Author(s):  
Georg Groth ◽  
Denise A. Mills ◽  
Erika Christiansen ◽  
Mark L. Richter ◽  
Bernhard Huchzermeyer

2021 ◽  
Author(s):  
Juan Montecchia ◽  
Mónica Fass ◽  
Ignacio Cerrudo ◽  
Facundo Quiroz ◽  
Salvador Nicosia ◽  
...  

Abstract Sunflower Verticillium Wilt and Leaf Mottle (SVW), caused by Verticillium dahliae (Kleb.; Vd), is a soil-borne disease affecting sunflower worldwide. A single dominant locus, known as V1, was formerly effective in controlling North-American Vd races, whereas races from Argentina, Europe and an emerging race from USA overcome its resistance. This emphasizes the need for identifying broad-spectrum genetic resistance (BSR) sources. Here we characterize two sunflower Mapping Populations (MPs) for SVW resistance: a biparental MP and the association MP from the National Institute of Agricultural Technology (INTA), under field growing conditions. Nine field-trials (FTs) were conducted in highly infested fields in the most SVW-affected region of Argentina. Several disease descriptors (DDs), including incidence and severity, were scored across four phenological stages. Generalized linear models were fitted according to the nature of each variable, adjusting mean phenotypes for inbred lines (IL) across and within FTs. Comparison of these responses allowed the identification of novel BSR sources. Furthermore, we present the first report of SVW resistance heritability, with estimates ranging from 35% to 45% for DDs related to disease incidence and severity, respectively. This study constitutes the largest SVW resistance characterization reported to date in sunflower, identifying valuable genetic resources for BSR-breeding to cope with a pathogen of increasing importance worldwide.


1991 ◽  
Vol 266 (12) ◽  
pp. 7333-7338
Author(s):  
N Inohara ◽  
A Iwamoto ◽  
Y Moriyama ◽  
S Shimomura ◽  
M Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document