vinyl sulfone
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 38)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Tao Zhang ◽  
Jinghua Cai ◽  
Muyun Xu ◽  
Xinrui Ma ◽  
Hui Wang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3927
Author(s):  
Andrés Felipe Ochica Larrota ◽  
Ricardo Vera-Graziano ◽  
Alex López-Córdoba ◽  
Edwin Yesid Gómez-Pachón

Sugarcane bagasse (SCB) is an abundant by-product of sugar refining that can be utilized as a raw material for cellulose isolation for several industrial applications. Electrospinning has garnered attention in recent years because it allows the preparation of cellulosic materials with unique properties. In this study, cellulose was isolated from sugarcane bagasse and acetylated to fabricate fine acetate cellulose fibers through electrospinning. Subsequently, the electrospun fibers were deacetylated and cationized in order to produce functionalized materials with potential textile applications. The functional fibers were colored with an anionic dye (vinyl sulfone) with and without the presence of salt and were evaluated according to dye fixation, color attributes, morphological characteristics, and thermal stability. Cationic cellulose fibers that were dyed without added salt were found to be brighter and demonstrated better color fixation than those with added salt. In addition, morphological analysis performed using scanning electron microscopy demonstrated that cationized fibers dyed without added salt were better preserved at this stage. The cationic fiber also evidenced a high-temperature resistance, exhibiting a degradation temperature above 236 °C. The results suggest that cellulose fibers dyed in this manner can potentially be considered for use in textile applications due to their suitable dye fixation and tunable porosity (i.e., breathability).


2021 ◽  
Author(s):  
Ruojia Li ◽  
Jianjun Yang ◽  
Jiewen Hu ◽  
Gangqiang Zhang ◽  
Ping Zhu

Abstract Shorter fashion cycles have led to the rapid accumulation of unwanted and waste textiles. Compared to light-coloured textiles, the dark-coloured ones are more difficult to recycle and reuse, and their incineration and landfilling have negative environmental consequences. A technology that sufficiently decolorizes these textiles without causing major damage to their structure and properties is therefore useful. In this study, a waste cotton fabric containing vinyl sulfone reactive dyes was subjected to chemical treatments with different oxidants and/or reducing agent. The effects of various treatments on the fabric’s coloration and mechanical properties were compared. The two-step treatment using first Na2S2O4 and then H2O2 showed the best performance, achieving a CIE whiteness index of 65.1, 19.3% tensile strength loss, 1.8% weight loss, 93.5% decolouration rate, and a degree of polymerization of 747.7. A mechanism was proposed to explain the synergistic decolorization process.


2021 ◽  
Author(s):  
Véronique Sauvé ◽  
George Sung ◽  
Emma MacDougall ◽  
Guennadi Kozlov ◽  
Anshu Saran ◽  
...  

PINK1 and parkin constitute a mitochondrial quality control system mutated in Parkinson's disease. PINK1, a kinase, phosphorylates ubiquitin to recruit parkin, an E3 ubiquitin ligase, to mitochondria. PINK1 controls both parkin localization and activity through phosphorylation of both ubiquitin and the ubiquitin-like (Ubl) domain of parkin. Here, we observe that phospho-ubiquitin can bind to two distinct sites on parkin, a high affinity site on RING1 that controls parkin localization, and a low affinity site on RING0 that releases parkin autoinhibition. Surprisingly, NMR titrations and ubiquitin vinyl sulfone assays show that the RING0 site has higher affinity for phospho-ubiquitin than the phosphorylated Ubl. Parkin could be activated by micromolar concentrations of tetra-phospho-ubiquitin chains that mimic a mitochondrion bearing multiple phosphorylated ubiquitins. A chimeric form of parkin with the Ubl domain replaced by ubiquitin was readily activated by PINK1 phosphorylation. In all cases, mutation of the binding site on RING0 abolished parkin activation. The feedforward mechanism of parkin activation confers robustness and rapidity to the PINK1-parkin pathway and likely represents an intermediate step in its evolutionary development.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinyi Zhang ◽  
Li Wang ◽  
Wenhui Fu ◽  
Yue Feng ◽  
Chengrun Zeng ◽  
...  

18F-Labeled blood pool agents (BPAs) have attracted great attention for identifying bleeding sites. However, many BPAs are not sufficiently evaluated partially due to the limitations of labeling methods. In our previous work, we noticed that 18F-PEG1-vinyl sulfone (18F-VS) could efficiently label red blood cells (RBCs) ex vivo and in situ. However, its application as BPA is not fully evaluated. In this study, we systematically explored the feasibility of using 18F-VS-labeled RBCs as a positron emission tomography (PET) BPA for intra-abdominal bleeding diagnosis. In brief, we first optimized the labeling conditions, which lead to an 80% labeling yield of RBCs after incubating with 18F-VS in phosphate-buffered saline (PBS) at 37°C for 20 min. 18F-VS-labeled RBCs were found to be stable in vitro, which could simplify its transportation/storage for in vivo applications. In normal rat PET study, the cardiovascular system could be clearly imaged up to 5 h post injection (p.i.). An intra-abdominal hemorrhage rat model demonstrated that the 18F-VS-labeled RBCs clearly showed the dynamic changes of extravascular radioactivity due to intra-abdominal hemorrhage. Validation in the model of gastrointestinal bleeding clearly demonstrated the great potential of using 18F-VS-labeled RBCs as a BPA, which could be further evaluated in future studies.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 560
Author(s):  
Diego Carballares ◽  
Roberto Morellon-Sterling ◽  
Xiaomin Xu ◽  
Frank Hollmann ◽  
Roberto Fernandez-Lafuente

This paper outlines the immobilization of the recombinant dimeric unspecific peroxygenase from Agrocybe aegerita (rAaeUPO). The enzyme was quite stable (remaining unaltered its activity after 35 h at 47 °C and pH 7.0). Phosphate destabilized the enzyme, while glycerol stabilized it. The enzyme was not immobilized on glyoxyl-agarose supports, while it was immobilized albeit in inactive form on vinyl-sulfone-activated supports. rAaeUPO immobilization on glutaraldehyde pre-activated supports gave almost quantitative immobilization yield and retained some activity, but the biocatalyst was very unstable. Its immobilization via anion exchange on PEI supports also produced good immobilization yields, but the rAaeUPO stability dropped. However, using aminated agarose, the enzyme retained stability and activity. The stability of the immobilized enzyme strongly depended on the immobilization pH, being much less stable when rAaeUPO was adsorbed at pH 9.0 than when it was immobilized at pH 7.0 or pH 5.0 (residual activity was almost 0 for the former and 80% for the other preparations), presenting stability very similar to that of the free enzyme. This is a very clear example of how the immobilization pH greatly affects the final biocatalyst performance.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2211
Author(s):  
Thitinan Aiebchun ◽  
Panupong Mahalapbutr ◽  
Atima Auepattanapong ◽  
Onnicha Khaikate ◽  
Supaphorn Seetaha ◽  
...  

Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


Author(s):  
WU Lu-Yang ◽  
MA Yang-Min ◽  
LEI Shan ◽  
WANG Tian-Hao ◽  
FENG Yi

Background: Malaria is one of the most important infectious diseases in the world. The most severe form of malaria in humans is caused by Plasmodium falciparum. Malaria is a worldwide health problem, with 214 million new cases in 2015 and 438,000 deaths, most of which in Africa. Therefore, there is an urgent need for novel, low-toxic, more specific inhibitors to find new antimalarial agents. A promising target for antimalarial drug design is falcipain-2, a cysteine protease from P. falciparum, that has received considerable attention due to its key role in the life cycle of the parasite. Methods: Three-dimensional quantitative structure-activity relationship (3D-QSAR) models of 39 peptidyl vinyl sulfone cysteine protease inhibitors was constructed using Topomer CoMFA. Topomer Search was employed to virtually screen lead-like compounds in the ZINC database. Molecular docking was employed to further explore the binding requirements between the ligands and the receptor protein which included several hydrogen bonds between peptidyl vinyl sulfone cysteine protease inhibitors and active site residues. Results: The non-cross correlation coefficient (r 2 ), the interaction validation coefficient (q2 ) and the external validation (r 2 pred) were 0.902, 0.685 and 0.763, respectively. The results showed that the model not only had good estimation stability but also good prediction capability. 22 new molecules were obtained, whose predicted activity are higher than template molecules. The results showed that the Topomer Search technology can be effectively applied to screen and design new peptidyl vinyl sulfone cysteine protease inhibitors. Molecular docking showed extensive interactions between peptidyl vinyl sulfone cysteine protease inhibitors and residues of LYS24, ASP21, LYS59 and ASP17 in the active site. Conclusion: 39 peptidyl vinyl sulfone cysteine protease inhibitors were used in the 3D-QSAR study. Topomer CoMFA 3DQSAR method was used to build the model, and the model was well predicted and statistically validated. The design of potent new inhibitors of cysteine protease can get useful insights from these results.


Sign in / Sign up

Export Citation Format

Share Document