scholarly journals Complex Molecular Relationship Between Vegetative Compatibility Groups (VCGs) in Verticillium dahliae: VCGs Do Not Always Align with Clonal Lineages

2014 ◽  
Vol 104 (6) ◽  
pp. 650-659 ◽  
Author(s):  
María del Mar Jiménez-Gasco ◽  
Glenna M. Malcolm ◽  
Mónica Berbegal ◽  
Josep Armengol ◽  
Rafael M. Jiménez-Díaz

Verticillium wilts caused by the soilborne fungus Verticillium dahliae are among the most challenging diseases to control. Populations of this pathogen have been traditionally studied by means of vegetative compatibility groups (VCGs) under the assumption that VCGs comprise genetically related isolates that correlate with clonal lineages. We aimed to resolve the phylogenetic relationships among VCGs and their subgroups based on sequences of the intergenic spacer region (IGS) of the ribosomal DNA and six anonymous polymorphic sequences containing single-nucleotide polymorphisms (VdSNPs). A collection of 68 V. dahliae isolates representing the main VCGs and subgroups (VCGs 1A, 1B, 2A, 2B, 3, 4A, 4B, and 6) from different geographic origins and hosts was analyzed using the seven DNA regions. Maximum parsimony (MP) phylogenies inferred from IGS and VdSNP sequences showed five and six distinct clades, respectively. Phylogenetic analyses of individual and combined data sets indicated that certain VCG subgroups (e.g., VCGs 1A and 1B) are closely related and share a common ancestor; however, other subgroups (e.g., VCG 4B) are more closely related to members of a different VCG (e.g., VCG 2A) than to subgroups of the same VCG (VCG 4B). Furthermore, MP analyses indicated that VCG 2B is polyphyletic, with isolates placed in at least three distinct phylogenetic lineages based on IGS sequences and two lineages based on VdSNP sequences. Results from our study suggest the existence of main VCG lineages that contain VCGs 1A and 1B; VCGs 2A and 4B; and VCG 4A, for which both phylogenies agree; and the existence of other VCGs or VCG subgroups that seem to be genetically heterogeneous or show discrepancies in their phylogenetic placement: VCG 2B, VCG 3, and VCG 6. These results raise important caveats regarding the interpretation of VCG analyses: genetic homogeneity and close evolutionary relationship between members of a VCG should not be assumed.

2008 ◽  
Vol 98 (4) ◽  
pp. 475-483 ◽  
Author(s):  
J. Enya ◽  
M. Togawa ◽  
T. Takeuchi ◽  
S. Yoshida ◽  
S. Tsushima ◽  
...  

Although the causal agent of yellows of Brassica rapa (turnip, pak choi, and narinosa) in Japan was reported in 1996 to be Fusarium oxysporum f. sp. conglutinans, this classification has remained inconclusive because of a lack of detailed genetic and pathogenic studies. Therefore, we analyzed the taxonomic position of this organism using Japanese isolates of F. oxysporum complex obtained from diseased individuals of various B. rapa subspecies. Phylogenetic analyses using partial sequences of the rDNA intergenic spacer region and the mating-type gene (MAT1-1-1α-box) showed that B. rapa and cabbage isolates belong to different monophyletic clades that separated at early evolutionary stages. Additionally, correlations were observed between the molecular phylogeny and the vegetative compatibility groups. Isolates from turnip, komatsuna, and narinosa (B. rapa group) did not show pathogenicity against cabbage or broccoli (B. oleracea group), although they caused severe symptoms on their original host species. In contrast, cabbage isolates had significantly higher (P = 0.05) virulence on B. oleracea than on B. rapa crops. Our results indicate that F. oxysporum complex isolates from B. rapa and B. oleracea are not only phylogenetically distinct but also differ in host specificity. Therefore, we propose a novel forma specialis, F. oxysporum f. sp. rapae, which causes yellows on B. rapa, including turnip, komatsuna, pak choi, and narinosa.


2020 ◽  
Vol 94 ◽  
Author(s):  
T.H. Le ◽  
K.L.T. Pham ◽  
H.T.T. Doan ◽  
T.K. Xuyen Le ◽  
K.T. Nguyen ◽  
...  

Abstract Many members of Fasciolidae are common trematodes in cattle, buffaloes, sheep, elephants, pigs, with some capable of infecting humans also. In this study, the complete or near-complete sequences of ribosomal transcription unit (rTU or rDNA), each of Fasciola hepatica (Australia), Fascioloides jacksoni (Sri Lanka), Fasciolopsis buski (Vietnam) and three isolates of F. gigantica (Vietnam), were obtained and characterized. The full length of rDNA for each F. hepatica, ‘hybrid’ Fasciola sp., Fas. jacksoni and Fa. Buski, was 7657 bp, 7966 bp, 7781 bp and 8361 bp, with the complete intergenic spacer region (IGS) (862 bp, 1170 bp, 987 bp and 561 bp), respectively. The rDNA of two ‘pure’ F. gigantica isolates from Vietnam was 6794 bp with unsequenced IGS. For 28S rRNA genes the Fasciola spp. are equal, 1958 bp for 18S, 160 bp for 5.8S, 3863 bp and 454 bp for ITS1 but ITS2 differ by one nucleotide (Thymine) (359 or 360 bp). The ITS1 of the sensu lato Fa. buski has some distinguishable features, 286 bp for ITS2, 3862 bp for 28S and four repeat units of 356–361 bp each found in ITS1. The 28S rDNA analysis showed the lowest level of divergence (0–0.57%) between F. hepatica and F. gigantica and higher (2.23–2.62%) and highest (6–6.42%) for Fas. jacksoni and Fasciolopsis, respectively. The tree of 43 strains/species clearly produced a well-supported phylogeny, where 18 fasciolids consistently grouped, forming a discrete Fasciolidae clade, distinct from Philophthalmidae, Echinostomatidae and Echinochasmidae in Echinostomatoidea. Fascioloides jacksoni is outside Fasciola spp.: basal with Fas. magna, as previously demonstrated.


2020 ◽  
pp. PHYTO-06-20-023
Author(s):  
Laura S. Bautista-Jalón ◽  
Omer Frenkel ◽  
Leah Tsror (Lahkim) ◽  
Glenna M. Malcolm ◽  
Beth K. Gugino ◽  
...  

Verticillium dahliae is a soilborne fungal pathogen affecting many economically important crops that can also infect weeds and rotational crops with no apparent disease symptoms. The main research goal was to test the hypothesis that V. dahliae populations recovered from asymptomatic rotational crops and weed species are evolutionarily and genetically distinct from symptomatic hosts. We collected V. dahliae isolates from symptomatic and asymptomatic hosts growing in fields with histories of Verticillium wilt of potato in Israel and Pennsylvania (United States), and used genotyping-by-sequencing to analyze the evolutionary history and genetic differentiation between populations of different hosts. A phylogeny inferred from 26,934 single-nucleotide polymorphisms (SNPs) in 126 V. dahliae isolates displayed a highly clonal structure correlated with vegetative compatibility groups, and isolates grouped in lineages 2A, 2B824, 4A, and 4B, with 77% of the isolates in lineage 4B. The lineages identified in this study were differentiated by host of origin; we found 2A, 2B824, and 4A only in symptomatic hosts but isolates from asymptomatic hosts (weeds, oat, and sorghum) grouped exclusively within lineage 4B, and were genetically indistinguishable from 4B isolates sampled from symptomatic hosts (potato, eggplant, and avocado). Using coalescent analysis of 158 SNPs of lineage 4B, we inferred a genealogy with clades that correlated with geographic origin. In contrast, isolates from asymptomatic and symptomatic hosts shared some of the same haplotypes and were not differentiated. We conclude that asymptomatic weeds and rotational hosts may be potential reservoirs for V. dahliae populations of lineage 4B, which are pathogenic to many cultivated hosts.


2008 ◽  
Vol 98 (7) ◽  
pp. 823-829 ◽  
Author(s):  
G. Cai ◽  
R. W. Schneider

Random amplified polymorphic DNA (RAPD) and microsatellite-primed polymerase chain reaction (MP-PCR) were used to characterize 164 isolates of Cercospora kikuchii, most of which were collected from Louisiana. Plant tissue (seeds versus leaves), but not host cultivar, had a significant impact on pathogen population differentiation. Cluster analysis showed that the Louisiana population was dominated by a primary lineage (group I) with only a few Louisiana isolates belonging to the minor lineage that also included the non-Louisiana isolates (group II). A previous study showed that isolates could be differentiated according to vegetative compatibility groups (VCGs). However, RAPD and MP-PCR data demonstrated that isolates of C. kikuchii were not generally clustered according to these VCGs. Furthermore, genetic relationships within and between VCGs were examined using sequences of the intergenic spacer region of rDNA. These analyses showed that VCG is not an indicator of evolutionary lineage in this fungus. Our results suggest the likely existence of a cryptically functioning sexual stage in some portion of the C. kikuchii population.


Plant Disease ◽  
2000 ◽  
Vol 84 (11) ◽  
pp. 1241-1245 ◽  
Author(s):  
K. F. Dobinson ◽  
M. A. Harrington ◽  
M. Omer ◽  
R. C. Rowe

Forty isolates of Verticillium dahliae, collected from potato seed tubers and potato plants from various regions in North America and previously assigned to vegetative compatibility groups (VCGs) 4A or 4B, were characterized using molecular markers. The VCG 4A isolates were previously shown to be a highly virulent pathotype of potato and to interact synergistically with the root-lesion nematode Pratylenchus penetrans to cause potato early dying. All but one of the VCG 4A isolates characterized in this study lacked the subspecies-specific repetitive DNA sequence E18 and could be differentiated from the remaining isolates by restriction fragment length polymorphisms (RFLPs) in the nuclear rDNA and Trp1 loci. The E18 RFLP patterns of several VCG 4B isolates from Maine and New York were highly similar to those of VCG 4B isolates previously collected from potato and tomato fields in Ontario. The data presented here suggest that the molecular markers will be useful for the detection and classification of isolates of V. dahliae associated with potato early dying.


2000 ◽  
Vol 90 (5) ◽  
pp. 529-536 ◽  
Author(s):  
Nadia Korolev ◽  
Jaacov Katan ◽  
Talma Katan

A collection of 565 isolates of Verticillium dahliae, recovered between 1992 and 1997 from 13 host plant species and soil at 47 sites in Israel, was tested for vegetative compatibility using nitrate-nonutilizing (nit) mutants. Three vegetative compatibility groups (VCGs) were found and identified as VCG2A (28 isolates), VCG2B (158 isolates), and VCG4B (378 isolates) by using international reference strains. One isolate was heterokaryon self-incompatible. Of the VCG2B isolates, 92% were recovered from the northern part of Israel and 90% of VCG4B isolates were recovered from the south, with some overlap in the central region. Isolates of the minor group VCG2A were geographically scattered among the two major VCGs. Isolates of the same VCG resembled one another more than isolates from different VCGs based on colony and microsclerotial morphology, temperature responses, and, partially, pathogenicity. Different pathotypes were defined among 60 isolates tested, using cotton (cv. Acala SJ-2) and eggplant (cv. Black Beauty) as differentials. All isolates in VCG2A and 86% of the isolates in VCG4B, irrespective of their origin, induced weak to moderate symptoms on cotton and moderate to severe symptoms on eggplant and were similar to the previously described cotton nondefoliating patho-type. In contrast, all cotton isolates in VCG2B caused severe foliar symptoms, stunting, and often death, but little or no defoliation of inoculated cotton plants. These were defined as a cotton defoliating-like pathotype and induced only weak to moderate symptoms on eggplant. We concluded that vegetative compatibility grouping of V. dahliae in Israel is closely associated with specific pathogenicity and other phenotypic traits.


Sign in / Sign up

Export Citation Format

Share Document