scholarly journals Molecular Characterization of Vegetative Compatibility Group 4A and 4B Isolates of Verticillium dahliae Associated with Potato Early Dying

Plant Disease ◽  
2000 ◽  
Vol 84 (11) ◽  
pp. 1241-1245 ◽  
Author(s):  
K. F. Dobinson ◽  
M. A. Harrington ◽  
M. Omer ◽  
R. C. Rowe

Forty isolates of Verticillium dahliae, collected from potato seed tubers and potato plants from various regions in North America and previously assigned to vegetative compatibility groups (VCGs) 4A or 4B, were characterized using molecular markers. The VCG 4A isolates were previously shown to be a highly virulent pathotype of potato and to interact synergistically with the root-lesion nematode Pratylenchus penetrans to cause potato early dying. All but one of the VCG 4A isolates characterized in this study lacked the subspecies-specific repetitive DNA sequence E18 and could be differentiated from the remaining isolates by restriction fragment length polymorphisms (RFLPs) in the nuclear rDNA and Trp1 loci. The E18 RFLP patterns of several VCG 4B isolates from Maine and New York were highly similar to those of VCG 4B isolates previously collected from potato and tomato fields in Ontario. The data presented here suggest that the molecular markers will be useful for the detection and classification of isolates of V. dahliae associated with potato early dying.

Author(s):  
Pearl Dadd Daigle ◽  
Karen Kirkby ◽  
Damian Collins ◽  
Will Cuddy ◽  
Peter Lonergan ◽  
...  

Verticillium dahliae, the causal agent of Verticillium wilt, is a soil-borne ascomycete that infects numerous agriculturally important crops globally, including cotton. As a billion-dollar industry, cotton is economically important to Australia and the management of disease such as Verticillium wilt is key for the success of the industry. Internationally, defoliating V. dahliae isolates belonging to Vegetative Compatibility Group (VCG) 1A cause severe damage to cotton, while non-defoliating VCG2A isolates result in significantly less disease. However, in Australia, VCG2A is causing more severe damage to crops in the field than the defoliating VCG1A. This study aimed to replicate field observations in controlled greenhouse conditions. We examined and compared disease symptoms on a range of Australian commercial cotton varieties when inoculated with different V. dahliae VCGs. Seedlings were root dipped in conidial suspensions and assessed over seven weeks. The final disease score, disease over time and root length were analysed. Plant mortality resulted from both V. dahliae VCG1A and VCG2A isolates across all cotton varieties used, confirming that there are virulent VCG2A isolates present in Australia. To our knowledge, although virulent on other plant hosts, V. dahliae VCG2A has not previously been reported to be highly virulent in cotton. We infer that virulence cannot be defined solely by VCG in Australian V. dahliae isolates causing disease in cotton.


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 237-240 ◽  
Author(s):  
Matias Pasquali ◽  
Flavia Dematheis ◽  
Giovanna Gilardi ◽  
Maria Lodovica Gullino ◽  
Angelo Garibaldi

Fusarium oxysporum f. sp. lactucae, the causal agent of Fusarium wilt of lettuce, has been reported in three continents in the last 10 years. Forty-seven isolates obtained from infected plants and seed in Italy, the United States, Japan, and Taiwan were evaluated for pathogenicity and vegetative compatibility. Chlorate-resistant, nitrate-nonutilizing mutants were used to determine genetic relatedness among isolates from different locations. Using the vegetative compatibility group (VCG) approach, all Italian and American isolates, type 2 Taiwanese isolates, and a Japanese race 1 were assigned to the major VCG 0300. Taiwanese isolates type 1 were assigned to VCG 0301. The hypothesis that propagules of Fusarium oxysporum f. sp. lactucae that caused epidemics on lettuce in 2001-02 in Italian fields might have spread via import and use of contaminated seeds is discussed.


1989 ◽  
Vol 67 (8) ◽  
pp. 2420-2424 ◽  
Author(s):  
J. A. LaMondia ◽  
W. H. Elmer

Isolates of Fusarium moniliforme (Sheld.) emend. Snyd. & Hans., F. oxysporum (Schlecht) emend. Snyd. & Hans., and F. solani (Mart.) Appel & Wollenw. emend. Snyd. & Hans. were recovered from three 5-year-old field grown asparagus (Asparagus officinalis L. cv. Mary Washington) by isolating from symptomatic and asymptomatic feeder roots, storage roots, crown and basal stem segments. Fusarium moniliforme was more virulent than F. oxysporum on asparagus seedlings and F. solani was considered nonpathogenic. Isolates of F. moniliforme and F. oxysporum were placed into vegetative compatibility groups (VCGs) by demonstrating heterokaryosis with complementation tests using nitrate-nonutilizing (nit) mutants (pairing nitM and nit1 mutants). Ninety-seven of 135 isolates of F. moniliforme were placed in 13 vegetative compatibility groups. The remaining 38 isolates were not classified by vegetative compatibility because of poor nit mutant recovery. Eight of 18 isolates of F. oxysporum were unique and classed as single members of eight different VCGs. The other 10 isolates were not placed in VCGs. All isolates of F. moniliforme were virulent, but mean disease ratings differed among the isolates in different VCGs. There was no correlation between vegetative compatibility group and tissue substrate or symptom expression on the tissue substrate. It appears that virulence on asparagus is a common trait with few exceptions among genetically distinct populations of F. moniliforme and F. oxysporum colonizing asparagus.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1127-1131 ◽  
Author(s):  
M. A. Omer ◽  
D. A. Johnson ◽  
L. I. Douhan ◽  
P. B. Hamm ◽  
R. C. Rowe

Soil samples from 87 fields intended for potato production in the Columbia Basin of Washington and Oregon and 51 fields intended for mint production in Washington were assayed on a semiselective medium to quantify populations of Verticillium dahliae. The pathogen was isolated from 77 (89%) of the fields intended for potato production and 41 (80%) of the fields intended for mint production. Population densities ranged from 0 to 169 propagules/g of air-dried soil in fields intended for potato production and 0 to 75 propagules/g of air-dried soil in fields intended for mint production. Isolates of V. dahliae were recovered from soil assay plates and pure cultures were prepared to provide a collection of isolates for vegetative compatibility analysis. Among fields intended for potato production from which isolates of the fungus were assigned to a vegetative compatibility group (VCG), 93% of the fields were found to contain one or more isolates assigned to VCG 4A, nine (23%) contained one or more isolates assigned to VCG4B, and only one (3%) contained any isolates assigned to VCG 2B. In the case of fields planned for mint production in 1999 from which isolates of the fungus were assigned to a VCG, 13 fields (81%) were found to contain one or more isolates assigned to VCG 4A, 7 (44%) contained one or more isolates assigned to VCG 4B, and 5 (31%) contained one or more isolates assigned to VCG 2B. VCG 4A isolates of V. dahliae are widespread and numerous, particularly following potato production, but cause only mild to moderate symptoms in mint; therefore, this pathotype is unlikely to seriously endanger subsequent plantings of mint. However, planting potato in a field recently used to produce mint may pose a significant risk to the potato crop if high populations of the VCG4A pathotype (highly aggressive to potato) predominate. Preplant assessment of soil populations of V. dahliae without regard for the relative populations of various pathotypes present in a particular sample may lead to information not fully useful in integrated pest management systems.


2000 ◽  
Vol 90 (5) ◽  
pp. 529-536 ◽  
Author(s):  
Nadia Korolev ◽  
Jaacov Katan ◽  
Talma Katan

A collection of 565 isolates of Verticillium dahliae, recovered between 1992 and 1997 from 13 host plant species and soil at 47 sites in Israel, was tested for vegetative compatibility using nitrate-nonutilizing (nit) mutants. Three vegetative compatibility groups (VCGs) were found and identified as VCG2A (28 isolates), VCG2B (158 isolates), and VCG4B (378 isolates) by using international reference strains. One isolate was heterokaryon self-incompatible. Of the VCG2B isolates, 92% were recovered from the northern part of Israel and 90% of VCG4B isolates were recovered from the south, with some overlap in the central region. Isolates of the minor group VCG2A were geographically scattered among the two major VCGs. Isolates of the same VCG resembled one another more than isolates from different VCGs based on colony and microsclerotial morphology, temperature responses, and, partially, pathogenicity. Different pathotypes were defined among 60 isolates tested, using cotton (cv. Acala SJ-2) and eggplant (cv. Black Beauty) as differentials. All isolates in VCG2A and 86% of the isolates in VCG4B, irrespective of their origin, induced weak to moderate symptoms on cotton and moderate to severe symptoms on eggplant and were similar to the previously described cotton nondefoliating patho-type. In contrast, all cotton isolates in VCG2B caused severe foliar symptoms, stunting, and often death, but little or no defoliation of inoculated cotton plants. These were defined as a cotton defoliating-like pathotype and induced only weak to moderate symptoms on eggplant. We concluded that vegetative compatibility grouping of V. dahliae in Israel is closely associated with specific pathogenicity and other phenotypic traits.


1995 ◽  
Vol 73 (4) ◽  
pp. 680-682 ◽  
Author(s):  
Karol S. Elias ◽  
Peter J. Cotty

A rose bengal amended medium for selecting nitrate-metabolism mutants from fungi with reduced sensitivity to chlorate is described. Isolates of several species known to resist development of nitrate-metabolism mutants on chlorate medium formed such mutants when grown on the rose bengal – chlorate medium. These species include Aspergillus flavus (Link.), Fusarium lateritium (Nees ex Link.), Fusarium oxysporum (Schlecht.), Fusarium solani (Mart.) Sacc., Alternaria cassiae (Jurair and Khan), Alternaria macrospora (Zimmerman), and Alternaria tagetica (Shome and Mustafee). The medium allows selection of nitrate-metabolism mutants of certain fungal strains for which chlorate-based techniques have not been satisfactory. Resulting mutants, following phenotype determination and identification of complementary testers, can be paired to enable macroscopic observation of heterokaryon formation during vegetative compatibility analyses. Thus, this medium may facilitate development of information on delimitation of vegetative compatibility groups among strains within these taxa. Key words: chlorate resistance, population structure, vegetative compatibility group, VCG.


1990 ◽  
Vol 68 (6) ◽  
pp. 1245-1248 ◽  
Author(s):  
D. J. Jacobson ◽  
T. R. Gordon

One hundred and nineteen strains of Fusarium oxysporum f.sp. melonis were characterized by virulence and vegetative compatibility. One hundred and seven strains were placed in four previously reported vegetative compatibility groups: 0130, 0131, 0133, and 0134. Four strains were placed in three new vegetative compatibility groups, and the remaining eight strains were vegetatively self-incompatible. Two of the three new vegetative compatibility groups shared similar geographic origins and distribution with two previously reported vegetative compatibility groups; the third represented a more isolated infestation. All vegetatively self-incompatible isolates originated from culture collections; none have been recently isolated from nature. These newly characterized strains extend our knowledge of genetic diversity in F. oxysporum f.sp. melonis. All four F. oxysporum f.sp. melonis races exist in more than one vegetative compatibility group. European strains represent four vegetative compatibility groups, one of which is present in North America and another in the Middle East. The significance of this diversity is unknown, as are the phylogenetic relationships among strains in this forma specialis.


Plant Disease ◽  
1997 ◽  
Vol 81 (6) ◽  
pp. 592-596 ◽  
Author(s):  
T. L. Zuniga ◽  
T. A. Zitter ◽  
T. R. Gordon ◽  
D. T. Schroeder ◽  
D. Okamoto

Forty-six isolates of Fusarium oxysporum f. sp. melonis obtained from soil samples throughout melon-producing areas in New York State were identified on the basis of pathogenicity and colony morphology. Physiological races 1 and 2 were identified by their reaction on a set of differential melon cultivars. Race 1 was widely distributed, occurring in six of the seven New York counties surveyed. Twenty-seven of the 28 race 1 isolates were associated with vegetative compatibility group (VCG) 0134, whereas one was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Twelve out of 18 race 2 isolates were associated with VCG 0131, and occurred in four counties in eastern and western New York. Five isolates of race 2, associated with VCG 0130, were recovered from a farm in Washington County, as was a single race 2 isolate which was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Restriction fragment length polymorphisms in the nuclear DNA revealed variability among the isolates examined, but race 1/VCG 0134 isolates from New York and Maryland were identical or nearly so, as were race 2/VCG 0131 isolates from the two states. These findings suggest a close relationship between the populations of F. oxysporum f. sp. melonis in New York and Maryland. Race 2 isolates were more virulent than race 1 isolates, based on the number of days to first symptoms and death of melon seedlings.


Sign in / Sign up

Export Citation Format

Share Document