scholarly journals Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests

2015 ◽  
Vol 105 (4) ◽  
pp. 441-448 ◽  
Author(s):  
Paulo R. Kuhnem ◽  
Emerson M. Del Ponte ◽  
Yanhong Dong ◽  
Gary C. Bergstrom

This study aimed to assess whether pathogenic Fusarium graminearum isolates from wheat and maize were more aggressive on their host of origin and whether aggressiveness was influenced further by B-trichothecene chemotype. Fifteen isolates were selected from a contemporary collection of isolates surveyed in New York in 2011 to 2012 to represent diversity of host of origin and chemotype. Three pathogenicity assays were used to evaluate and compare these isolates. Fusarium head blight (FHB) severity and trichothecene production in wheat, and maize seedling blight were evaluated in greenhouse inoculation experiments, and Gibberella ear rot (GER) severity and trichothecene production were evaluated in maize ears inoculated in the field. Our results showed among F. graminearum isolates a wide variation in aggressiveness and mycotoxin production toward wheat and maize and these isolates could not be structured by their host of origin or by chemotype. Moreover, aggressiveness rank order changed according to the host/organ evaluated. This indicates that relative susceptibility at the seedling stage may not predict susceptibility of ears. Significant correlations were observed of total trichothecenes (deoxynivalenol [DON] and its acetylated derivatives) produced with FHB and GER severity on wheat and maize, respectively. One isolate did not produce DON or ADON in wheat or maize kernels, yet was aggressive on both hosts. Nine of the fifteen isolates produced small amounts of zearalenone (ZON) in maize kernels, but not in wheat kernels, and ZON level was not correlated with GER severity. F. graminearum isolates from New York showed wide variation in aggressiveness and mycotoxin production toward susceptible wheat and maize. Neither host of origin nor trichothecene chemotype appeared to structure the populations we sampled.

2014 ◽  
Vol 104 (5) ◽  
pp. 513-519 ◽  
Author(s):  
Pierri Spolti ◽  
Emerson M. Del Ponte ◽  
Jaime A. Cummings ◽  
Yanhong Dong ◽  
Gary C. Bergstrom

In all, 50 isolates of Fusarium graminearum from wheat spikes in New York, including 25 isolates each of the 15-acetyl-deoxynivalenol (15-ADON) and 3-ADON genotype, were tested to determine whether 3-ADON isolates are more fit for saprophytic survival and pathogenicity on wheat spikes than are 15-ADON isolates. The isolates were characterized and compared for 14 different attributes of saprophytic fitness and pathogenic fitness on a susceptible wheat variety. Isolates of the two genotypes could not be differentiated for most of these traits. Three principle components—ascospore production on corn stalks, total trichothecene amount in wheat kernels, and incidence of diseased spikelets up from the point of inoculation—accounted for 29.4, 18.9, and 10.8% of the variation among the isolates, respectively. A bootstrapping procedure grouped the isolates into two distinct groups, with 27 and 23 isolates each, with isolates from both genotypes represented in similar proportions (15-ADON/3-ADON, n = 14/13 and 11/12). Within the contemporary population of F. graminearum causing wheat head blight in New York, isolates with a 3-ADON genotype did not possess any detectable advantage over isolates with a 15-ADON genotype in saprophytic fitness or in pathogenic fitness on a susceptible wheat cultivar.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 607-613 ◽  
Author(s):  
Pierri Spolti ◽  
Emerson M. Del Ponte ◽  
Yanhong Dong ◽  
Jaime A. Cummings ◽  
Gary C. Bergstrom

A sample of 50 isolates, including 25 each of the 3-acetyldeoxynivalenol and the 15-acetyldeoxynivalenol trichothecene genotype, from a contemporary collection of Fusarium graminearum associated with Fusarium head blight (FHB) of wheat in New York varied in sensitivity to tebuconazole (effective concentration leading to a 50% reduction of mycelial growth [EC50] of 0.28 to 8.09 mg/liter; μ = 1.12 mg/liter) and metconazole (0.05 to 0.86 mg/liter; μ = 0.33). Mean sensitivity did not differ between the trichothecene genotype groups. Isolate Gz448NY11 from Steuben County is the first tebuconazole-resistant field isolate of F. graminearum reported in the Americas and has the lowest sensitivity to tebuconazole (EC50 = 8.09 mg/liter) documented for this species. Suppression of FHB and deoxynivalenol (DON) following application of a commercial rate of tebuconazole was significantly diminished in plants inoculated with the tebuconazole-resistant isolate compared with those inoculated with a tebuconazole-sensitive isolate well documented for its aggressiveness and toxigenicity on wheat. There was no diminution of FHB and DON suppression with either isolate following application of metconazole. Significantly more individuals of the tebuconazole-resistant isolate were recovered from spikes inoculated with an equal mixture of the two isolates and sprayed with tebuconazole. Future studies are needed on the epidemiology and monitoring of triazole-resistant isolates to understand the risk that fungicide resistance poses to disease management and food security.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1155-1160 ◽  
Author(s):  
K. D. Broders ◽  
P. E. Lipps ◽  
P. A. Paul ◽  
A. E. Dorrance

Fusarium graminearum is an important pathogen of cereal crops in Ohio causing primarily head blight in wheat and stalk and ear rot of corn. During the springs of 2004 and 2005, 112 isolates of F. graminearum were recovered from diseased corn and soybean seedlings from 30 locations in 13 Ohio counties. These isolates were evaluated in an in vitro pathogenicity assay on both corn and soybean seed, and 28 isolates were tested for sensitivity to the seed treatment fungicides azoxystrobin, trifloxystrobin, fludioxonil, and captan. All of the isolates were highly pathogenic on corn seed and moderately to highly pathogenic on soybean seed. Fludioxonil was the only fungicide that provided sufficient inhibition of mycelial growth; however, several fludioxonil-resistant mutants were identified during the sensitivity experiments. These results indicate that F. graminearum is an important pathogen of both corn and soybean seed and seedlings in Ohio, and that continued use of fludioxonil potentially may select for less sensitive isolates of F. graminearum.


2017 ◽  
Vol 2 (3) ◽  
pp. 154-161
Author(s):  
Jiazheng Yuan ◽  
Michelle Zhu ◽  
Khalid Meksem ◽  
Matt Geisler ◽  
Patrick Hart ◽  
...  

Mycotoxin deoxynivalenol (DON), produced by Gibberella zeae (Schwein.) Petch (teleomorph of Fusarium graminearum Schwabe) was known to be both a virulence factor in the pathogenesis of Triticum aestivum L. (wheat) and an inhibitor of Arabidopsis thaliana L. seed germination. Fusarium graminearum causes both Gibberella ear rot in maize (Zea mays L.) and Fusarium head blight (FHB) in wheat and barley. Arabidopsis thaliana was also a host for the related root rot pathogen F. virguliforme Aoki. A. thaliana seedling growth was reduced by the pathogen in a proportional response to increasing spore concentrations. Here, the changes in transcript abundances corresponding to 10,560 A. thaliana expressed sequence tags (ESTs) was compared with changes in 192 known plant defense and biotic/abiotic stress related genes in soybean roots after infestation with F. virguliforme. A parallel comparison with a set of resistance pathways involved in response to the DON toxicity in A. thaliana was performed. A. thaliana data was obtained from the AFGC depository. The variations of transcript abundances in Arabidopsis and soybean treated with pathogen suggest that both plants respond to the pathogen mainly by common, possibly global responses with some specific secondary metabolic pathways involved in defense. In contrast, DON toxin appeared to impact central metabolisms in Arabidopsis plants with significant alterations ranging from the protein metabolism to redox production. Several new putative resistance pathways involved in responding to both pathogen and DON infestation in soybean and A. thaliana were identified.


2012 ◽  
Vol 25 (12) ◽  
pp. 1605-1616 ◽  
Author(s):  
Vessela Atanasova-Penichon ◽  
Sebastien Pons ◽  
Laetitia Pinson-Gadais ◽  
Adeline Picot ◽  
Gisèle Marchegay ◽  
...  

Fusarium graminearum is the causal agent of Gibberella ear rot and produces trichothecene mycotoxins. Basic questions remain unanswered regarding the kernel stages associated with trichothecene biosynthesis and the kernel metabolites potentially involved in the regulation of trichothecene production in planta. In a two-year field study, F. graminearum growth, trichothecene accumulation, and phenolic acid composition were monitored in developing maize kernels of a susceptible and a moderately resistant variety using quantitative polymerase chain reaction and liquid chromatography coupled with photodiode array or mass spectrometry detection. Infection started as early as the blister stage and proceeded slowly until the dough stage. Then, a peak of trichothecene accumulation occurred and infection progressed exponentially until the final harvest time. Both F. graminearum growth and trichothecene production were drastically reduced in the moderately resistant variety. We found that chlorogenic acid is more abundant in the moderately resistant variety, with levels spiking in the earliest kernel stages induced by Fusarium infection. This is the first report that precisely describes the kernel stage associated with the initiation of trichothecene production and provides in planta evidence that chlorogenic acid may play a role in maize resistance to Gibberella ear rot and trichothecene accumulation.


2010 ◽  
Vol 100 (5) ◽  
pp. 444-453 ◽  
Author(s):  
Rayko Becher ◽  
Ursula Hettwer ◽  
Petr Karlovsky ◽  
Holger B. Deising ◽  
Stefan G. R. Wirsel

Azole fungicides play a prominent role for reliable plant disease management. However, quantitative azole resistance has been shown to develop in fungal pathogens, including Fusarium graminearum, the causal agent of Fusarium head blight (FHB). Due to widespread application of azole fungicides, resistance may accumulate to higher degrees in fungal field populations over time. Although azole fungicides are prominent components in FHB control, little effort has been made to investigate azole resistance in F. graminearum. We allowed F. graminearum strain NRRL 13383 to adapt to an azole fungicide in vitro, applying a strongly growth-reducing but sublethal dose of tebuconazole. Two morphologically distinguishable azole-resistant phenotypes were recovered that differed with regard to levels of fitness, fungicide resistance, virulence, and mycotoxin production. Isolates of the adapted “phenotype 1” exhibited azole-specific cross-resistance, whereas “phenotype 2” isolates displayed the phenomenon of multidrug resistance because the sensitivity to amine fungicides was also affected. Assessment of individual infected spikelets for mycotoxin contents by high-performance liquid chromatography mass spectrometry and for Fusarium DNA by quantitative polymerase chain reaction indicated that some of the adapted isolates produced significantly higher levels of nivalenol per fungal biomass than the NRRL 13383 strain.


2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Elias Alisaac ◽  
Anna Rathgeb ◽  
Petr Karlovsky ◽  
Anne-Katrin Mahlein

Most studies of Fusarium head blight (FHB) focused on wheat infection at anthesis. Less is known about infections at later stages. In this study, the effect of infection timing on the development of FHB and the distribution of fungal biomass and deoxynivalenol (DON) along wheat spikes was investigated. Under greenhouse conditions, two wheat varieties were point-inoculated with Fusarium graminearum starting from anthesis until 25 days after anthesis. The fungus and fungal DNA were isolated from the centers and the bases of all the spikes but not from the tips for all inoculation times and both varieties. In each variety, the amount of fungal DNA and the content of DON and deoxynivalenol-3-glucoside (DON-3-G) were higher in the center than in the base for all inoculation times. A positive correlation was found between the content of fungal DNA and DON in the centers as well as the bases of both varieties. This study showed that F. graminearum grows downward within infected wheat spikes and that the accumulation of DON is largely confined to the colonized tissue. Moreover, F. graminearum was able to infect wheat kernels and cause contamination with mycotoxins even when inoculated 25 days after anthesis.


2004 ◽  
Vol 70 (4) ◽  
pp. 2044-2051 ◽  
Author(s):  
S. P. McCormick ◽  
L. J. Harris ◽  
N. J. Alexander ◽  
T. Ouellet ◽  
A. Saparno ◽  
...  

ABSTRACT Gibberella zeae (asexual state Fusarium graminearum) is a major causal agent of wheat head blight and maize ear rot in North America and is responsible for contamination of grain with deoxynivalenol and related trichothecene mycotoxins. To identify additional trichothecene biosynthetic genes, cDNA libraries were prepared from fungal cultures under trichothecene-inducing conditions in culture and in planta. A gene designated LH1 that was highly expressed under these conditions exhibited only moderate (59%) similarity to known trichothecene biosynthetic cytochrome P450s. To determine the function of LH1, gene disruptants were produced and assessed for trichothecene production. Gene disruptants no longer produced 15-acetyldeoxynivalenol, which is oxygenated at carbon 7 (C-7) and C-8, but rather accumulated calonectrin and 3-deacetylcalonectrin, which are not oxygenated at either C-7 or C-8. These results indicate that gene LH1 encodes a cytochrome P450 responsible for oxygenation at one or both of these positions. Despite the relatively low level of DNA and amino acid sequence similarity between the two genes, LH1 from G. zeae is the probable homologue of Tri1, which encodes a cytochrome P450 required for C-8 oxygenation in F. sporotrichioides.


2011 ◽  
Vol 59 (3) ◽  
pp. 255-260 ◽  
Author(s):  
E. László ◽  
B. Varga ◽  
O. Veisz

Numerous Fusarium species have been associated with the Fusarium head blight (FHB) disease of wheat, barley and other small-grain cereals, reducing worldwide cereal crop yields and, as a consequence of their mycotoxin production in the cereal grain, having an impact on both human and animal health.The year 2010 was extremely favourable for Fusarium head blight pathogens. Over a hundred symptomatic wheat heads were collected from various locations in Hungary. The aim was to determine the diversity of the Fusarium species infecting winter wheat ears. A total of 86 Fusarium spp. were morphologically identified from diseased kernels. F. sambucinum was found to be present in two of the Martonvásár samples. This pathogen had only previously been detected extremely sporadically. The species F. culmorum and F. verticillioides were found at a much lower rate than expected, while none of the isolates were identified as F. poae. On the basis of the results, 95% of the isolates belonged to the Fusarium graminearum species complex.


Sign in / Sign up

Export Citation Format

Share Document