scholarly journals Chlorogenic Acid and Maize Ear Rot Resistance: A Dynamic Study Investigating Fusarium graminearum Development, Deoxynivalenol Production, and Phenolic Acid Accumulation

2012 ◽  
Vol 25 (12) ◽  
pp. 1605-1616 ◽  
Author(s):  
Vessela Atanasova-Penichon ◽  
Sebastien Pons ◽  
Laetitia Pinson-Gadais ◽  
Adeline Picot ◽  
Gisèle Marchegay ◽  
...  

Fusarium graminearum is the causal agent of Gibberella ear rot and produces trichothecene mycotoxins. Basic questions remain unanswered regarding the kernel stages associated with trichothecene biosynthesis and the kernel metabolites potentially involved in the regulation of trichothecene production in planta. In a two-year field study, F. graminearum growth, trichothecene accumulation, and phenolic acid composition were monitored in developing maize kernels of a susceptible and a moderately resistant variety using quantitative polymerase chain reaction and liquid chromatography coupled with photodiode array or mass spectrometry detection. Infection started as early as the blister stage and proceeded slowly until the dough stage. Then, a peak of trichothecene accumulation occurred and infection progressed exponentially until the final harvest time. Both F. graminearum growth and trichothecene production were drastically reduced in the moderately resistant variety. We found that chlorogenic acid is more abundant in the moderately resistant variety, with levels spiking in the earliest kernel stages induced by Fusarium infection. This is the first report that precisely describes the kernel stage associated with the initiation of trichothecene production and provides in planta evidence that chlorogenic acid may play a role in maize resistance to Gibberella ear rot and trichothecene accumulation.

Plant Disease ◽  
1999 ◽  
Vol 83 (10) ◽  
pp. 954-960 ◽  
Author(s):  
L. J. Harris ◽  
A. E. Desjardins ◽  
R. D. Plattner ◽  
P. Nicholson ◽  
G. Butler ◽  
...  

Trichothecene-producing and -nonproducing Fusarium graminearum strains were tested for their ability to cause Gibberella ear rot in field trials at two locations—Ottawa, Ontario, and Peoria, Illinois—in 1996. Maize ears were inoculated with wild-type or transgenic F. graminearum strains in which the trichothecene biosynthetic pathway had been disabled by the specific disruption of the trichodiene synthase gene and with a derivative revertant strain in which trichothecene production had been restored through recombination. A silk channel inoculation method was employed at both locations. In addition, a kernel puncture inoculation method was used at the Ontario location. Harvested maize ears were analyzed for visual disease severity, grain yield, deoxynivalenol (DON) concentration, and fungal biomass by quantitative polymerase chain reaction (PCR) and/or ergosterol quantitation. There was a significant correlation (r= 0.86) between data obtained from the two different methods of quantifying fungal biomass. The trichothecene-nonproducing strains were still pathogenic but appeared less virulent on maize than the trichothecene-producing progenitor and revertant strains, as assayed by most parameters. This suggests that the trichothecenes may act as virulence factors to enhance the spread of F. graminearum on maize.


2015 ◽  
Vol 105 (4) ◽  
pp. 441-448 ◽  
Author(s):  
Paulo R. Kuhnem ◽  
Emerson M. Del Ponte ◽  
Yanhong Dong ◽  
Gary C. Bergstrom

This study aimed to assess whether pathogenic Fusarium graminearum isolates from wheat and maize were more aggressive on their host of origin and whether aggressiveness was influenced further by B-trichothecene chemotype. Fifteen isolates were selected from a contemporary collection of isolates surveyed in New York in 2011 to 2012 to represent diversity of host of origin and chemotype. Three pathogenicity assays were used to evaluate and compare these isolates. Fusarium head blight (FHB) severity and trichothecene production in wheat, and maize seedling blight were evaluated in greenhouse inoculation experiments, and Gibberella ear rot (GER) severity and trichothecene production were evaluated in maize ears inoculated in the field. Our results showed among F. graminearum isolates a wide variation in aggressiveness and mycotoxin production toward wheat and maize and these isolates could not be structured by their host of origin or by chemotype. Moreover, aggressiveness rank order changed according to the host/organ evaluated. This indicates that relative susceptibility at the seedling stage may not predict susceptibility of ears. Significant correlations were observed of total trichothecenes (deoxynivalenol [DON] and its acetylated derivatives) produced with FHB and GER severity on wheat and maize, respectively. One isolate did not produce DON or ADON in wheat or maize kernels, yet was aggressive on both hosts. Nine of the fifteen isolates produced small amounts of zearalenone (ZON) in maize kernels, but not in wheat kernels, and ZON level was not correlated with GER severity. F. graminearum isolates from New York showed wide variation in aggressiveness and mycotoxin production toward susceptible wheat and maize. Neither host of origin nor trichothecene chemotype appeared to structure the populations we sampled.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 493 ◽  
Author(s):  
Mohamed F. Abdallah ◽  
Marthe De Boevre ◽  
Sofie Landschoot ◽  
Sarah De Saeger ◽  
Geert Haesaert ◽  
...  

Fusarium graminearum can cause Giberella Ear Rot (GER) and seedling blight in maize, resulting in major yield losses. Besides GER, the infected grains are consequently contaminated with multiple mycotoxins of F. graminearum. Zearalenone and trichothecenes, such as deoxynivalenol and its acetylated forms, are among the major mycotoxins associated with F. graminearum infection in maize. In the current work, we explored the effect of the endophytic fungal genera of Epicoccum and Sordaria, to control F. graminearum infection in comparative trials with Piriformospora spp., an elusive endophytic genus. Furthermore, we investigated the effect of these endophytes on zearalenone, deoxynivalenol, and 15-acetyldeoxynivalenol levels using in vitro and in planta assays. As plants are endowed with several detoxification mechanisms comprising e.g., glucosylation of trichothecenes, the effect of the isolated fungal endophytes on the deoxynivalenol-3-glucoside level was also assessed. In general, results showed a considerable variability in the antifungal activity, both among species and among isolates within one species. Additionally, the effect on mycotoxin levels was variable, and not necessarily related to the antifungal activity except for zearalenone levels which were consistently reduced by the endophytes. These results highlight the great potential of certain endophytic fungal strains as new biocontrol agents in agricultural science.


2008 ◽  
Vol 21 (12) ◽  
pp. 1571-1581 ◽  
Author(s):  
Amber E. Stephens ◽  
Donald M. Gardiner ◽  
Rosemary G. White ◽  
Alan L. Munn ◽  
John M. Manners

Fusarium graminearum causes head blight (FHB) and crown rot (CR) diseases in wheat. Compared with FHB, CR symptom development occurs slowly, usually taking 4 to 8 weeks to become visible. To characterize CR development, we used histological and real-time quantitative polymerase chain reaction analyses to assess fungal colonization during a timecourse of infection. Three distinct phases of infection were identified: i) initial spore germination with formation of a superficial hyphal mat at the inoculation point, ii) colonization of the adaxial epidermis of the outer leaf sheath and mycelial growth from the inoculation point to the crown, concomitant with a drop in fungal biomass, and iii) extensive colonization of the internal crown tissue. Fungal gene expression was examined during each phase using Affymetrix GeneChips. In total, 1,839 F. graminearum genes were significantly upregulated, including some known FHB virulence genes (e.g., TRI5 and TRI14), and 2,649 genes were significantly downregulated in planta compared with axenically cultured mycelia. Global comparisons of fungal gene expression with published data for FHB showed significant similarities between early stages of FHB and CR. These results indicate that CR disease development involves distinct phases of colonization, each of which is associated with a different fungal gene expression program.


2014 ◽  
Vol 27 (10) ◽  
pp. 1148-1158 ◽  
Author(s):  
Vessela Atanasova-Penichon ◽  
Stéphane Bernillon ◽  
Gisèle Marchegay ◽  
Aurélia Lornac ◽  
Laetitia Pinson-Gadais ◽  
...  

Fusarium verticillioides infects maize ears, causing ear rot disease and contamination of grain with fumonisin mycotoxins. This contamination can be reduced by the presence of bioactive compounds in kernels that are able to inhibit fumonisin biosynthesis. To identify such compounds, we used kernels from a maize genotype with moderate susceptibility to F. verticillioides, harvested at the milk-dough stage (i.e., when fumonisin production initiates in planta), and applied a bioguided fractionation approach. Chlorogenic acid was the most abundant compound in the purified active fraction and its contribution to fumonisin inhibitory activity was up to 70%. Moreover, using a set of maize genotypes with different levels of susceptibility, chlorogenic acid was shown to be significantly higher in immature kernels of the moderately susceptible group. Altogether, our data indicate that chlorogenic acid may considerably contribute to either maize resistance to Fusarium ear rot, fumonisin accumulation, or both. We further investigated the mechanisms involved in the inhibition of fumonisin production by chlorogenic acid and one of its hydrolyzed products, caffeic acid, by following their metabolic fate in supplemented F. verticillioides broths. Our data indicate that F. verticillioides was able to biotransform these phenolic compounds and that the resulting products can contribute to their inhibitory activity.


2004 ◽  
Vol 70 (4) ◽  
pp. 2044-2051 ◽  
Author(s):  
S. P. McCormick ◽  
L. J. Harris ◽  
N. J. Alexander ◽  
T. Ouellet ◽  
A. Saparno ◽  
...  

ABSTRACT Gibberella zeae (asexual state Fusarium graminearum) is a major causal agent of wheat head blight and maize ear rot in North America and is responsible for contamination of grain with deoxynivalenol and related trichothecene mycotoxins. To identify additional trichothecene biosynthetic genes, cDNA libraries were prepared from fungal cultures under trichothecene-inducing conditions in culture and in planta. A gene designated LH1 that was highly expressed under these conditions exhibited only moderate (59%) similarity to known trichothecene biosynthetic cytochrome P450s. To determine the function of LH1, gene disruptants were produced and assessed for trichothecene production. Gene disruptants no longer produced 15-acetyldeoxynivalenol, which is oxygenated at carbon 7 (C-7) and C-8, but rather accumulated calonectrin and 3-deacetylcalonectrin, which are not oxygenated at either C-7 or C-8. These results indicate that gene LH1 encodes a cytochrome P450 responsible for oxygenation at one or both of these positions. Despite the relatively low level of DNA and amino acid sequence similarity between the two genes, LH1 from G. zeae is the probable homologue of Tri1, which encodes a cytochrome P450 required for C-8 oxygenation in F. sporotrichioides.


2015 ◽  
Vol 144 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Francine R. Nerbass ◽  
Ricardo T. Casa ◽  
Paulo Roberto Kuhnem ◽  
Amauri Bogo ◽  
Luis Sangoi ◽  
...  

2007 ◽  
Vol 85 (4) ◽  
pp. 369-376 ◽  
Author(s):  
S. Shea Miller ◽  
Lana M. Reid ◽  
Linda J. Harris

One of the most economically important diseases of maize in Canada is gibberella ear rot caused by Fusarium graminearum Schwabe (teleomorph = Gibberella zeae (Schw.) Petch). Understanding how the fungus becomes established will help in developing effective strategies to reduce the incidence of this disease. This study investigates the infection process of F. graminearum on maize silks using both a wild-type F. graminearum as well as a strain transformed with a gene from jellyfish to constitutively express green fluorescent protein. Immature ears of maize were inoculated in the field with wild-type F. graminearum and harvested at specific times post infection, and the silks were stained with Chlorazol Black E for examination. In addition, uninoculated ears were excised, placed on water agar in large Petri dishes, and the silks inoculated with a suspension of macroconidia of the transformed fungus. The progress of fungal growth was then monitored using microscopy. Germination of conidia was observed 4–6 h after inoculation. A variable period of random growth often followed, after which some of the hyphae would grow in more or less straight lines down the silk towards the cob (rachis), and ultimately infect the developing kernels. Access to the cob occurred in 7–9 d in susceptible genotypes and 12–15 d in resistant genotypes. The fungus could penetrate the ovary directly through the silk attachment point or, when the silk was growing over other kernels, the fungus could traverse from the silk to colonize interkernel spaces. Entry into the cob was either through the rachis surface via exterior growth between kernels, or into the rachis via the pedicel.


2003 ◽  
Vol 93 (6) ◽  
pp. 712-719 ◽  
Author(s):  
A. C. Bily ◽  
L. M. Reid ◽  
J. H. Taylor ◽  
D. Johnston ◽  
C. Malouin ◽  
...  

The relationship between the primary cell wall phenolic acids, dehydrodimers of ferulic acid, and maize grain resistance to Fusarium graminearum, the causal agent of gibberella ear rot, was investigated. Concentrations of dehydrodimers of ferulic acid were determined in the pericarp and aleurone tissues of five inbreds and two hybrids of varying susceptibility and in a segregating population from a cross between a resistant and susceptible inbred. Significant negative correlations were found between disease severity and diferulic acid content. Even stronger correlations were observed between diferulic acid and the fungal steroid ergosterol, which is an indicator of fungal biomass in infected plant tissue. These results were consistent over two consecutive field seasons, which differed significantly for temperature and rainfall during pollination, the most susceptible stage of ear development. No correlation was found between the levels of these phenolics and deoxynivalenol levels. This is the first report of in vivo evidence that the dehydrodimers of ferulic acid content in pericarp and aleurone tissues may play a role in genotypic resistance of maize to gibberella ear rot.


Genome ◽  
2005 ◽  
Vol 48 (3) ◽  
pp. 521-533 ◽  
Author(s):  
M Liakat Ali ◽  
Jeff H Taylor ◽  
Liu Jie ◽  
Genlou Sun ◽  
Manilal William ◽  
...  

Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%–35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars.Key words: Gibberella ear rot, corn, Fusarium graminearum, QTL, linkage map.


Sign in / Sign up

Export Citation Format

Share Document