scholarly journals Transcript Abundance Responses of Resistance Pathways of Arabidopsis thaliana to Deoxynivalenol

2017 ◽  
Vol 2 (3) ◽  
pp. 154-161
Author(s):  
Jiazheng Yuan ◽  
Michelle Zhu ◽  
Khalid Meksem ◽  
Matt Geisler ◽  
Patrick Hart ◽  
...  

Mycotoxin deoxynivalenol (DON), produced by Gibberella zeae (Schwein.) Petch (teleomorph of Fusarium graminearum Schwabe) was known to be both a virulence factor in the pathogenesis of Triticum aestivum L. (wheat) and an inhibitor of Arabidopsis thaliana L. seed germination. Fusarium graminearum causes both Gibberella ear rot in maize (Zea mays L.) and Fusarium head blight (FHB) in wheat and barley. Arabidopsis thaliana was also a host for the related root rot pathogen F. virguliforme Aoki. A. thaliana seedling growth was reduced by the pathogen in a proportional response to increasing spore concentrations. Here, the changes in transcript abundances corresponding to 10,560 A. thaliana expressed sequence tags (ESTs) was compared with changes in 192 known plant defense and biotic/abiotic stress related genes in soybean roots after infestation with F. virguliforme. A parallel comparison with a set of resistance pathways involved in response to the DON toxicity in A. thaliana was performed. A. thaliana data was obtained from the AFGC depository. The variations of transcript abundances in Arabidopsis and soybean treated with pathogen suggest that both plants respond to the pathogen mainly by common, possibly global responses with some specific secondary metabolic pathways involved in defense. In contrast, DON toxin appeared to impact central metabolisms in Arabidopsis plants with significant alterations ranging from the protein metabolism to redox production. Several new putative resistance pathways involved in responding to both pathogen and DON infestation in soybean and A. thaliana were identified.

2004 ◽  
Vol 70 (4) ◽  
pp. 2044-2051 ◽  
Author(s):  
S. P. McCormick ◽  
L. J. Harris ◽  
N. J. Alexander ◽  
T. Ouellet ◽  
A. Saparno ◽  
...  

ABSTRACT Gibberella zeae (asexual state Fusarium graminearum) is a major causal agent of wheat head blight and maize ear rot in North America and is responsible for contamination of grain with deoxynivalenol and related trichothecene mycotoxins. To identify additional trichothecene biosynthetic genes, cDNA libraries were prepared from fungal cultures under trichothecene-inducing conditions in culture and in planta. A gene designated LH1 that was highly expressed under these conditions exhibited only moderate (59%) similarity to known trichothecene biosynthetic cytochrome P450s. To determine the function of LH1, gene disruptants were produced and assessed for trichothecene production. Gene disruptants no longer produced 15-acetyldeoxynivalenol, which is oxygenated at carbon 7 (C-7) and C-8, but rather accumulated calonectrin and 3-deacetylcalonectrin, which are not oxygenated at either C-7 or C-8. These results indicate that gene LH1 encodes a cytochrome P450 responsible for oxygenation at one or both of these positions. Despite the relatively low level of DNA and amino acid sequence similarity between the two genes, LH1 from G. zeae is the probable homologue of Tri1, which encodes a cytochrome P450 required for C-8 oxygenation in F. sporotrichioides.


Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 724-730 ◽  
Author(s):  
S. A. Pereyra ◽  
R. Dill-Macky ◽  
A. L. Sims

Survival and inoculum production of Gibberella zeae (Schwein.) Petch (anamorph Fusarium graminearum (Schwabe)), the causal agent of Fusarium head blight of wheat and barley, was related to the rate of wheat (Triticum aestivum L.) residue decomposition. Infested wheat residue, comprising intact nodes, internodes, and leaf sheaths, was placed in fiberglass mesh bags on the soil surface and at 7.5- to 10-cm and 15- to 20-cm depths in chisel-plowed plots and 15 to 20 cm deep in moldboard-plowed plots in October 1997. Residue was sampled monthly from April through November during 1998 and every 2 months through April to October 1999. Buried residue decomposed faster than residue placed on the soil surface. Less than 2% of the dry-matter residue remained in buried treatments after 24 months in the field, while 25% of the residue remained in the soil-surface treatment. Survival of G. zeae on node tissues was inversely related to the residue decomposition rate. Surface residue provided a substrate for G. zeae for a longer period of time than buried residue. Twenty-four months after the initiation of the trial, the level of colonization of nodes in buried residue was half the level of colonization of residue on the soil surface. Colonization of node tissues by G. zeae decreased over time, but increased for other Fusarium spp. Ascospores of G. zeae were still produced on residue pieces after 23 months, and these spores were capable of inducing disease. Data from this research may assist in developing effective management strategies for residues infested with G. zeae.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1458-1464 ◽  
Author(s):  
Melissa D. Keller ◽  
Wade E. Thomason ◽  
David G. Schmale

Corn residue is a significant source of inoculum for epidemics of Fusarium head blight (FHB) in wheat and barley, but little is known about the influence of different amounts of corn residue on FHB. We monitored the spread of a released clone of Gibberella zeae (Fusarium graminearum), causal agent of FHB, from small 0.84-m-diameter research plots containing 45, 200, or 410 g of infested corn stalk pieces in winter wheat and barley fields in Virginia over 3 years (2008 to 2010). The fungus was recaptured through the collection of wheat and barley spikes at 0 and 3 m from the source and the released clone was identified in heterogeneous background populations using amplified fragment length polymorphisms. Results showed a slightly greater intensity of recovery of the clone at a greater distance when more infested residue was present. Plots containing larger amounts of inoculum (410 g) generally resulted in a smaller decline of recovery of the clone at 3 m from the source, indicating a greater spread from the larger inoculum source. The clone was also recovered at distances ≥18 m from inoculum sources. Larger amounts of corn residue generally had less influence on clone recovery in plots containing a moderately resistant wheat cultivar than those containing a susceptible wheat cultivar.


2015 ◽  
Vol 105 (4) ◽  
pp. 441-448 ◽  
Author(s):  
Paulo R. Kuhnem ◽  
Emerson M. Del Ponte ◽  
Yanhong Dong ◽  
Gary C. Bergstrom

This study aimed to assess whether pathogenic Fusarium graminearum isolates from wheat and maize were more aggressive on their host of origin and whether aggressiveness was influenced further by B-trichothecene chemotype. Fifteen isolates were selected from a contemporary collection of isolates surveyed in New York in 2011 to 2012 to represent diversity of host of origin and chemotype. Three pathogenicity assays were used to evaluate and compare these isolates. Fusarium head blight (FHB) severity and trichothecene production in wheat, and maize seedling blight were evaluated in greenhouse inoculation experiments, and Gibberella ear rot (GER) severity and trichothecene production were evaluated in maize ears inoculated in the field. Our results showed among F. graminearum isolates a wide variation in aggressiveness and mycotoxin production toward wheat and maize and these isolates could not be structured by their host of origin or by chemotype. Moreover, aggressiveness rank order changed according to the host/organ evaluated. This indicates that relative susceptibility at the seedling stage may not predict susceptibility of ears. Significant correlations were observed of total trichothecenes (deoxynivalenol [DON] and its acetylated derivatives) produced with FHB and GER severity on wheat and maize, respectively. One isolate did not produce DON or ADON in wheat or maize kernels, yet was aggressive on both hosts. Nine of the fifteen isolates produced small amounts of zearalenone (ZON) in maize kernels, but not in wheat kernels, and ZON level was not correlated with GER severity. F. graminearum isolates from New York showed wide variation in aggressiveness and mycotoxin production toward susceptible wheat and maize. Neither host of origin nor trichothecene chemotype appeared to structure the populations we sampled.


Plant Disease ◽  
2009 ◽  
Vol 93 (11) ◽  
pp. 1217-1217 ◽  
Author(s):  
M. Pasquali ◽  
F. Giraud ◽  
C. Brochot ◽  
L. Hoffmann ◽  
T. Bohn

Head blight caused by Fusarium graminearum is one of the major diseases of wheat (Triticum aestivum L.) in Luxembourg (2) and there is concern for mycotoxins in diseased grain. Isolates of F. graminearum have been assigned to chemotypes based on the particular toxins produced. Ten wheat fields representing different topoclimatological areas of Luxembourg were surveyed in 2007 and 2008 to determine the frequency and distribution of chemotypes. Partially blighted wheat heads were collected, and diseased grains were plated on Fusarium-selective agar (dichloran-chloramphenicol-peptone) for 12 days at 22 ± 2°C with a 12-h light period. Monoconidial isolates of F. graminearum (79 in 2007 and 85 in 2008) were obtained by conidia dilution on 2% water agar and needle selection under a microscope. F. graminearum isolates showed rapid growth on potato dextrose agar, dense aerial mycelium with red pigment deposits in the plate, macroconidia with five to six defined septa, and a basal cell with the typical foot shape. Microconidia were absent. To confirm species identification, a PCR reaction was carried out using the F. graminearum species-specific primers Fg16F (5′-CTCCGGATATGTTGCGTCAA-3′) and Fg16R (5′-GGTAGGTATCCGACATGGCAA-3′) according to Demeke et al. (1). Chemotype of each isolate was determined according to Ward et al. (4). In particular, PCR primer 12CON (5′ CATGAGCATGGTGATGTC-3′) coupled with primer 12NF (5′-TCTCCTCGTTGTATCTGG-3′) and primer 3CON (5′-TGGCAAAGACTGGTTCAC-3′) coupled with primer 3NA (5′-GTGCACAGAATATACGAGC-3′) identified the nivalenol chemotype, primer 12CON coupled with primer 12-15F (5′-TACAGCGGTCGCAACTTC-3′) and primer 3CON coupled with primer 3D15A (5′-ACTGACCCAAGCTGCCATC-3′) identified the 15-acetylated deoxynivalenol (DON) chemotype, while primer 12CON coupled with primer 12-3F (5′-CTTTGGCAAGCCCGTGCA-3′) and primer 3CON coupled with primer 3D3A (5′-CGCATTGGCTAACACATG-3′) identified 3-acetylated DON chemotype. Reactions were repeated two times and positive controls (provided by Kerry O'Donnell, NRRL collection, Peoria, IL) and a negative control (water) were used in each reaction. Frequency of the nivalenol chemotype was found to be 2.5% in 2007 and 1% in 2008. Interestingly, the nivalenol chemotype was absent in southern Luxembourg. According to this finding, nivalenol was likely to be present at low levels in grain from Reisdorf and Echternach in 2007 (central Luxembourg) and in 2008 from grain of Troisvierges (northern Luxembourg). The remaining isolates in both years belonged to the 15-acetylated DON chemotype and the 3-acetylated DON chemotype was not detected. Compared with a previous report from the Netherlands (3), the nivalenol chemotype in Luxembourg is less frequent and widespread. To our knowledge, this is the first report of the nivalenol chemotype of F. graminearum causing head blight on wheat in Luxembourg. References:(1) T. Demeke et al. Int. J. Food Microbiol. 103:271, 2005. (2) F. Giraud et al. Plant Dis. 92:1587, 2008. (3) C. Waalwijk et al. Eur. J. Plant Pathol. 109:743, 2003. (4) T. J. Ward et al. Fung. Genet. Biol. 45:473, 2008.


Author(s):  
Hussein M. Khaeim ◽  
Anthony Clark ◽  
Tom Pearson ◽  
Dr. David Van Sanford

Fusarium head blight (FHB) or head scab, caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)], is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Numerous strategies for scab resistance breeding are in use, including phenotypic selection for low severity and marker-assisted selection for resistance QTL. The most destructive consequences of scab are evidenced through a reduction in grain quality, and the presence of mycotoxins, the most common of which is deoxynivalenol (DON). Thus, there is great interest among breeders in selecting for resistance to both of these traits. To this end, a study was devised as follows. In 2010, 20 bulk F3 SRW wheat populations with scab resistant parents in their pedigrees were harvested by population from unreplicated plots near Lexington, KY. The plots were affected by a naturally occurring mild-moderate scab epidemic. The grain was sorted on a USDA/ARS and National Manufacturing Seed Sorter System with color camera according to a calibration that reflected visual differences between asymptomatic grain and grain showing FHB symptoms. This process was repeated in 2011 using grain from plots that had conidial suspension applied at anthesis. In 2012, an unreplicated plot study of the C0, C1 and C2 cycles of selection, inoculated with grain spawn and conidial suspension, was evaluated for Fusarium damaged kernels (FDK) and DON concentration. An additional cycle of selection was conducted by running the bulk grain through the sorter. In October 2012, 4 selection cycles of the 20 populations were planted in a RCB experiment at Lexington and Princeton, KY. Bulk populations were planted in both scab nursery and plots, and C3 accepted and rejected of all populations and derived lines of 2 populations were planted in the scab nursery in Lexington, KY. Some populations had FDK and DON reduction with selection, and some derived lines had either numerical or significant reduction with selection. Although the accepted fraction had non-significant reduction compared with the rejected fraction over the populations, FDK and DON means were obviously lower in accepted than in rejected fractions.


2015 ◽  
Vol 28 (10) ◽  
pp. 1142-1152 ◽  
Author(s):  
Vamsi J. Nalam ◽  
Syeda Alam ◽  
Jantana Keereetaweep ◽  
Barney Venables ◽  
Dehlia Burdan ◽  
...  

Fusarium graminearum causes Fusarium head blight, an important disease of wheat. F. graminearum can also cause disease in Arabidopsis thaliana. Here, we show that the Arabidopsis LOX1 and LOX5 genes, which encode 9-lipoxygenases (9-LOXs), are targeted during this interaction to facilitate infection. LOX1 and LOX5 expression were upregulated in F. graminearum–inoculated plants and loss of LOX1 or LOX5 function resulted in enhanced disease resistance in the corresponding mutant plants. The enhanced resistance to F. graminearum infection in the lox1 and lox5 mutants was accompanied by more robust induction of salicylic acid (SA) accumulation and signaling and attenuation of jasmonic acid (JA) signaling in response to infection. The lox1- and lox5-conferred resistance was diminished in plants expressing the SA-degrading salicylate hydroxylase or by the application of methyl-JA. Results presented here suggest that plant 9-LOXs are engaged during infection to control the balance between SA and JA signaling to facilitate infection. Furthermore, since silencing of TaLpx-1 encoding a 9-LOX with homology to LOX1 and LOX5, resulted in enhanced resistance against F. graminearum in wheat, we suggest that 9-LOXs have a conserved role as susceptibility factors in disease caused by this important fungus in Arabidopsis and wheat.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1155-1160 ◽  
Author(s):  
K. D. Broders ◽  
P. E. Lipps ◽  
P. A. Paul ◽  
A. E. Dorrance

Fusarium graminearum is an important pathogen of cereal crops in Ohio causing primarily head blight in wheat and stalk and ear rot of corn. During the springs of 2004 and 2005, 112 isolates of F. graminearum were recovered from diseased corn and soybean seedlings from 30 locations in 13 Ohio counties. These isolates were evaluated in an in vitro pathogenicity assay on both corn and soybean seed, and 28 isolates were tested for sensitivity to the seed treatment fungicides azoxystrobin, trifloxystrobin, fludioxonil, and captan. All of the isolates were highly pathogenic on corn seed and moderately to highly pathogenic on soybean seed. Fludioxonil was the only fungicide that provided sufficient inhibition of mycelial growth; however, several fludioxonil-resistant mutants were identified during the sensitivity experiments. These results indicate that F. graminearum is an important pathogen of both corn and soybean seed and seedlings in Ohio, and that continued use of fludioxonil potentially may select for less sensitive isolates of F. graminearum.


Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 637-644 ◽  
Author(s):  
N. S. Dufault ◽  
E. D. De Wolf ◽  
P. E. Lipps ◽  
L. V. Madden

Fusarium graminearum (teleomorph Gibberella zeae) is the most common pathogen of Fusarium head blight (FHB) in North America. Ascospores released from the perithecia of G. zeae are a major source of inoculum for FHB. The influence of temperature and moisture on perithecial production and development was evaluated by monitoring autoclaved inoculated cornstalk sections in controlled environments. Perithecial development was assessed at all combinations of five temperatures (12, 16, 20, 24, and 28°C) and four moisture levels with means (range) -0.45 (-0.18, -1.16), -1.30 (-0.81, -1.68), -2.36 (-1.34, -3.53) and -4.02 (-2.39, -5.88) MPa. Moisture levels of -0.45 and -1.30 MPa and temperatures from 16 to 24°C promoted perithecial production and development. Temperatures of 12 and 28°C and moisture levels of -2.36 and -4.02 MPa either slowed or limited perithecial production and development. The water potential of -1.30 MPa had mature perithecia after 10 days at 20°C, but not until after 15 days for 24°C. In contrast, few perithecia achieved maturity and produced ascospores at lower moisture levels (-2.36 and -4.02 MPa) and low (12°C) and high (28°C) temperatures. In the future, it may be possible to use the information gathered in these experiments to improve the accuracy of FHB forecasting systems.


2008 ◽  
Vol 88 (6) ◽  
pp. 1115-1125 ◽  
Author(s):  
F. Eudes ◽  
A. Comeau ◽  
S. Rioux ◽  
J. Collin

Trichothecene, a factor of aggressiveness of Fusarium graminearum in wheat fusarium head blight (FHB), was evaluated in an anther co-culture assay for the regeneration of doubled haploid (DH) lines with reduced mycotoxin accumulation. A Fusarium graminearum culture filtrate and a defined mixture of purified trichothecenes were compared with a control treatment in two F1-derived microspores populations. Frontana and Katepwa were the FHB resistant and intermediate resistant sources, respectively, and the cultivar Norseman was the FHB susceptible parent. A preliminary evaluation of the subpopulations of DH lines, using the point inoculation method in the greenhouse, showed selection effects for FHB resistance in the trichothecene co-cultured Frontana/Norseman subpopulation only. Three years of field evaluation using the spray inoculation method revealed that the DH subpopulation from the F1 hybrid Frontana/Norseman co-culture in the presence of trichothecenes accumulated consistently less deoxynivalenol (DON) in the grain than the control subpopulation. The FHB symptoms were also significantly reduced for 1 yr (2001) in the same subpopulation. This subpopulation showed increased test weight, plant height and a 1.1-d delay in heading date when compared with the control subpopulation, under disease pressure. A trichothecene co-cultured DH subpopulation from Katepwa/Norseman also had a significantly lower DON content for 1 yr. Key words: Androgenesis, disease resistance, Gibberella zeae, mycotoxin, Triticum aestivum, wheat scab


Sign in / Sign up

Export Citation Format

Share Document