scholarly journals A Turnip Mosaic Virus Determinant of Systemic Necrosis in Nicotiana benthamiana and a Novel Resistance-Breaking Determinant in Chinese Cabbage Identified from Chimeric Infectious Clones

2019 ◽  
Vol 109 (9) ◽  
pp. 1638-1647
Author(s):  
Ik-Hyun Kim ◽  
Hye-Kyoung Ju ◽  
Junsu Gong ◽  
Jae-Yeong Han ◽  
Eun-Young Seo ◽  
...  

Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5′, central, and 3′ domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5′ 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis ‘Norang’, which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.

2019 ◽  
Vol 109 (5) ◽  
pp. 904-912 ◽  
Author(s):  
Junsu Gong ◽  
Hye-Kyoung Ju ◽  
Ik-Hyun Kim ◽  
Eun-Young Seo ◽  
In-Sook Cho ◽  
...  

Infectious clones were generated from 17 new Korean radish isolates of Turnip mosaic virus (TuMV). Phylogenetic analysis indicated that all new isolates, and three previously characterized Korean radish isolates, belong to the basal-BR group (indicating that the pathotype can infect both Brassica and Raphanus spp.). Pairwise analysis revealed genomic nucleotide and polyprotein amino acid identities of >87.9 and >95.7%, respectively. Five clones (HJY1, HJY2, KIH2, BE, and prior isolate R007) had lower sequence identities than other isolates and produced mild symptoms in Nicotiana benthamiana. These isolates formed three distinct sequence classes (HJY1/HJY2/R007, KIH2, and BE), and several differential amino acid residues (in P1, P3, 6K2, and VPg) were present only in mild isolates HJY1, HJY2, and R007. The remaining isolates all induced systemic necrosis in N. benthamiana. Four mild isolates formed a phylogenetic subclade separate from another subclade including all of the necrosis-inducing isolates plus mild isolate KIH2. Symptom severity in radish and Chinese cabbage genotypes was not correlated with pathogenicity in N. benthamiana; indeed, Chinese cabbage cultivar Norang was not infected by any isolate, whereas Chinese cabbage cultivar Chusarang was uniformly susceptible. Four isolates were unable to infect radish cultivar Iljin, but no specific amino acid residues were correlated with avirulence. These results may lead to the identification of new resistance genes against TuMV.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010108
Author(s):  
Mengfei Ji ◽  
Jinping Zhao ◽  
Kelei Han ◽  
Weijun Cui ◽  
Xinyang Wu ◽  
...  

Jasmonic acid (JA) is a crucial hormone in plant antiviral immunity. Increasing evidence shows that viruses counter this host immune response by interfering with JA biosynthesis and signaling. However, the mechanism by which viruses affect JA biosynthesis is still largely unexplored. Here, we show that a highly conserved chloroplast protein cpSRP54 was downregulated in Nicotiana benthamiana infected by turnip mosaic virus (TuMV). Its silencing facilitated TuMV infection. Furthermore, cpSRP54 interacted with allene oxide cyclases (AOCs), key JA biosynthesis enzymes, and was responsible for delivering AOCs onto the thylakoid membrane (TM). Interestingly, TuMV P1 protein interacted with cpSRP54 and mediated its degradation via the 26S proteosome and autophagy pathways. The results suggest that TuMV has evolved a strategy, through the inhibition of cpSRP54 and its delivery of AOCs to the TM, to suppress JA biosynthesis and enhance viral infection. Interaction between cpSRP54 and AOCs was shown to be conserved in Arabidopsis and rice, while cpSRP54 also interacted with, and was degraded by, pepper mild mosaic virus (PMMoV) 126 kDa protein and potato virus X (PVX) p25 protein, indicating that suppression of cpSRP54 may be a common mechanism used by viruses to counter the antiviral JA pathway.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1290-1298 ◽  
Author(s):  
Monica A. Kehoe ◽  
Brenda A. Coutts ◽  
Roger A. C. Jones

The responses of 44 accessions, breeding lines, or cultivars of Brassica juncea (Indian mustard), 9 of B. carinata (Ethiopian mustard), 5 of B. nigra (black mustard), and 6 crosses between B. juncea and B. napus (canola) to sap inoculation with Turnip mosaic virus (TuMV) were investigated. Eleven different phenotypes were obtained, including six previously recognized in B. napus (+, O, R, RN, RN/+, and +N) and five not recorded before (+St, RN/St, RN/St/+, +N1, and +ND). All but two (+ and +St) were resistance phenotypes. The resistance phenotypes in B. carinata and B. juncea × B. napus crosses prevented systemic infection but those in B. juncea and B. nigra included systemic necrosis. Absence of systemic invasion associated with resistance phenotypes in B. carinata was confirmed by graft inoculations. The resistance phenotypes may reflect the presence of known TuMV resistance genes located in the A genome or unknown genes in the B genome in B. juncea, unknown resistance genes in the B or C genomes in B. carinata, and unknown resistance genes in the B genome in B. nigra. Further research to identify the resistance genes involved would establish the potential usefulness of these resistance phenotypes in breeding TuMV-resistant mustard cultivars for biofuel production.


2021 ◽  
Author(s):  
Zheng-Xing Song ◽  
Eun-Young Seo ◽  
Wen-Xing Hu ◽  
Jong-Hyeon Jeong ◽  
Jae Sun Moon ◽  
...  

Abstract In this work, two new Turnip mosaic virus (TuMV) strains (Canola-12 and Canola-14) overcoming resistance in canola (Brassica napus) were isolated from a B. napus sample which showed typical TuMV-like symptoms and was collected from Gimcheon city, South Korea in 2020. Complete genomes and infectious clones of each isolate were obtained. Phylogenetic analysis indicated that the strains isolated from canola belonged to the World-B group. Both infectious clones which were driven by 35S and T7 promoters induced systemic symptoms on Nicotiana benthamiana and B. napus. To our knowledge, this is the first report of TuMV infecting B. napus in South Korea.


2019 ◽  
Vol 20 (7) ◽  
pp. 990-1004 ◽  
Author(s):  
Shu Wang ◽  
Kelei Han ◽  
Jiejun Peng ◽  
Jinping Zhao ◽  
Liangliang Jiang ◽  
...  

2008 ◽  
Vol 21 (2) ◽  
pp. 178-187 ◽  
Author(s):  
Shahid Aslam Siddiqui ◽  
Cecilia Sarmiento ◽  
Erkki Truve ◽  
Harry Lehto ◽  
Kirsi Lehto

RNA silencing suppressor genes derived from six virus genera were transformed into Nicotiana benthamiana and N. tabacum plants. These suppressors were P1 of Rice yellow mottle virus (RYMV), P1 of Cocksfoot mottle virus, P19 of Tomato bushy stunt virus, P25 of Potato virus X, HcPro of Potato virus Y (strain N), 2b of Cucumber mosaic virus (strain Kin), and AC2 of African cassava mosaic virus (ACMV). HcPro caused the most severe phenotypes in both Nicotiana spp. AC2 also produced severe effects in N. tabacum but a much milder phenotype in N. benthamiana, although both HcPro and AC2 affected the leaf tissues of the two Nicotiana spp. in similar ways, causing hyperplasia and hypoplasia, respectively. P1-RYMV caused high lethality in the N. benthamiana plants but only mild effects in the N. tabacum plants. Phenotypic alterations produced by the other transgenes were minor in both species. Interestingly, the suppressors had very different effects on crucifer-infecting Tobamovirus (crTMV) infections. AC2 enhanced both spread and brightness of the crTMV-green fluorescent protein (GFP) lesions, whereas 2b and both P1 suppressors enhanced spread but not brightness of these lesions. P19 promoted spread of the infection into new foci within the infiltrated leaf, whereas HcPro and P25 suppressed the spread of crTMV-GFP lesions.


Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 639-639 ◽  
Author(s):  
H. Pospieszny ◽  
B. Hasiów ◽  
N. Borodynko

Zucchini yellow mosaic virus (ZYMV) is a member of the Potyvirus genus in the Potyviridae family, the largest group of plant viruses. Different isolates of this virus have been found in infected cucurbits throughout the world, including localities in Europe, America, Australia, and Asia. In August 2005, mosaic and yellowing of leaves, as well as yellow spots on green fruits, were observed on zucchini (Cucurbita pepo cv. giromontiina) growing in commercial fields in the Kujawsko-Pomorskie Region of Poland. Flexuous virus particles (~750 nm long), typical of potyviruses, were observed in leaf-dip preparations from symptomatic zucchini plants. The virus in the sap from symptomatic plants was mechanically transmitted and systemic infections were produced on Citrullus lanatus, Cucumis melo, Cucumis sativus, C. pepo cvs. giromontiina and patissoniana, C. maxima, and Nicotiana benthamiana. Severe symptoms such as severe malformation of leaves and stunting of plants were observed on zucchini plants (cv. giromontiina) infected mechanically with the virus and grown in the greenhouse. Double-antibody sandwich (DAS)-ELISA using an anti-ZYMV polyclonal antiserum (AS-0234; DSMZ, Braunschweig, Germany) identified the presence of ZYMV in mechanically infected C. pepo cv. giromontiina and N. benthamiana plants. Subsequently, a reverse transcription (RT)-PCR using a universal primer, Sprimer, designed from the consensus sequences that code for the conserved sequence GNNSGQP in the NIb region of Potyviridae family members and the M4 primer was performed (1). The 1740-bp PCR fragments were cloned into the pGEM-T vector (Promega, Madison, WI) and three randomly selected clones were sequenced on an ABI automatic sequencer. An 837-bp sequence representing the full length coat protein gene (GenBank Accession No. EF178505) was compared with homologous sequences from other ZYMV isolates using BioEdit and Mega 3.1 softwares. Genetic distances were calculated by Kimura's two-parameter method (2). Surprisingly, the Polish ZYMV isolate (ZYMV-Zug) was more closely related to ZYMV isolates from Asia than those from Europe. Pairwise comparisons of ZYMV-Zug with several other European ZYMV isolates (GenBank Accession Nos. DQ645729, AJ420020, AJ459956, AJ420014, AJ420019, DQ124239, and AJ420018) indicated an 81 to 82% nucleotide and 91 to 92% amino acid identity, while there was a 94% nucleotide and 99% amino acid identity with the Shanxi (GenBank Accession No. AY074808) and Shandong isolates (GenBank Accession No. AF513552) from China. References: (1) J. Chen et al. Arch. Virol. 146:757, 2001. (2) S. Kumar et al. Brie. Bioinform. 5:150, 2004.


2011 ◽  
Vol 46 (11) ◽  
pp. 1432-1438 ◽  
Author(s):  
José Albersio Araujo Lima ◽  
Ana Kelly Firmino da Silva ◽  
Maria do Livramento Aragão ◽  
Nádia Rutielly de Araújo Ferreira ◽  
Elizita Maria Teófilo

The objective of this work was to identify new sources of simple and multiple resistances to Cowpea severe mosaic virus (CPSMV), Cowpea aphid-borne mosaic virus (CABMV) and Cucumber mosaic virus (CMV) isolates in cowpea (Vigna unguiculata). Thirty-three genotypes from the germplasm bank of Universidade Federal do Ceará were tested as to their resistance to four CPSMV isolates, two CABMV isolates and one CMV isolate. Twenty-five days after the first virus inoculations, all inoculated plants, including the asymptomatic ones, were tested by serology. Genotypes were classified as: immune, plants without symptoms and negative serology; resistant, plants with mild mosaic and positive serology; susceptible, plants with mosaic and positive serology; and highly susceptible, plants with severe mosaic, other systemic symptoms, including systemic necrosis, and positive serology. Simple and multiple resistances to viruses were identified among the evaluated genotypes, but none of them showed multiple immunities to all isolates. Four genotypes showed immunity to all CPSMV isolates, two were immune to CABMV and two showed immunity to CMV. Eleven genotypes showed multiple resistances to two viruses, allowing for the development of new cultivars with more stable and broader resistance. Genotypes Purple Knuckle Hull-55, MNC-03-731C-21 and CNCx284-66E show resistance to CABMV, even when inoculated with CMV.


Sign in / Sign up

Export Citation Format

Share Document