scholarly journals Construction of Full-length Infectious cDNA Clones of Two Korean Isolates of Turnip Mosaic Virus Breaking Resistance in Brassica Napus

Author(s):  
Zheng-Xing Song ◽  
Eun-Young Seo ◽  
Wen-Xing Hu ◽  
Jong-Hyeon Jeong ◽  
Jae Sun Moon ◽  
...  

Abstract In this work, two new Turnip mosaic virus (TuMV) strains (Canola-12 and Canola-14) overcoming resistance in canola (Brassica napus) were isolated from a B. napus sample which showed typical TuMV-like symptoms and was collected from Gimcheon city, South Korea in 2020. Complete genomes and infectious clones of each isolate were obtained. Phylogenetic analysis indicated that the strains isolated from canola belonged to the World-B group. Both infectious clones which were driven by 35S and T7 promoters induced systemic symptoms on Nicotiana benthamiana and B. napus. To our knowledge, this is the first report of TuMV infecting B. napus in South Korea.

2019 ◽  
Vol 109 (5) ◽  
pp. 904-912 ◽  
Author(s):  
Junsu Gong ◽  
Hye-Kyoung Ju ◽  
Ik-Hyun Kim ◽  
Eun-Young Seo ◽  
In-Sook Cho ◽  
...  

Infectious clones were generated from 17 new Korean radish isolates of Turnip mosaic virus (TuMV). Phylogenetic analysis indicated that all new isolates, and three previously characterized Korean radish isolates, belong to the basal-BR group (indicating that the pathotype can infect both Brassica and Raphanus spp.). Pairwise analysis revealed genomic nucleotide and polyprotein amino acid identities of >87.9 and >95.7%, respectively. Five clones (HJY1, HJY2, KIH2, BE, and prior isolate R007) had lower sequence identities than other isolates and produced mild symptoms in Nicotiana benthamiana. These isolates formed three distinct sequence classes (HJY1/HJY2/R007, KIH2, and BE), and several differential amino acid residues (in P1, P3, 6K2, and VPg) were present only in mild isolates HJY1, HJY2, and R007. The remaining isolates all induced systemic necrosis in N. benthamiana. Four mild isolates formed a phylogenetic subclade separate from another subclade including all of the necrosis-inducing isolates plus mild isolate KIH2. Symptom severity in radish and Chinese cabbage genotypes was not correlated with pathogenicity in N. benthamiana; indeed, Chinese cabbage cultivar Norang was not infected by any isolate, whereas Chinese cabbage cultivar Chusarang was uniformly susceptible. Four isolates were unable to infect radish cultivar Iljin, but no specific amino acid residues were correlated with avirulence. These results may lead to the identification of new resistance genes against TuMV.


2019 ◽  
Vol 109 (9) ◽  
pp. 1638-1647
Author(s):  
Ik-Hyun Kim ◽  
Hye-Kyoung Ju ◽  
Junsu Gong ◽  
Jae-Yeong Han ◽  
Eun-Young Seo ◽  
...  

Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5′, central, and 3′ domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5′ 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis ‘Norang’, which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.


Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 674-683 ◽  
Author(s):  
Marine G. L. Guerret ◽  
Eviness P. Nyalugwe ◽  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Joop A. G. van Leur ◽  
...  

A new resistance-breaking strain of Turnip mosaic virus (TuMV) overcomes TuMV resistance genes that currently suppress spread of this virus in Brassica napus crops in the Liverpool Plains region of eastern Australia. Isolates 12.1 and 12.5 of this strain and three other isolates in TuMV pathotypes 1 (NSW-2), 7 (NSW-1), and 8 (WA-Ap1) were inoculated to plants of 19 B. napus cultivars and one breeding line. All plants of these cultivars and the breeding line proved susceptible to 12.1 and 12.5 but developed only resistance phenotypes with WA-Ap1 or mostly resistance phenotypes with NSW-1 and NSW-2. Five different TuMV resistance phenotypes occurred either alone or segregating in different combinations. When these five isolates were inoculated to plants of nine other crop or wild Brassicaceae spp. and four indicator hosts in other families, 12.1 and 12.5 resembled the other three in inducing TuMV resistance phenotypes in some Brassicaceae spp. but not others, and by inducing extreme resistance phenotypes in all inoculated plants of B. oleracea var. botrytis and Raphanus sativus. Therefore, the overall resistance-breaking properties of 12.1 and 12.5 were restricted to B. napus. When isolates 12.1, 12.5, and WA-Ap1 and additional Australian isolate WA-EP1 were sequenced and complete genomes of each compared, 12.1 and 12.5 grouped separately from the other 2 and from all 23 Australian isolates with complete genomes sequenced previously. In addition, there was evidence for at least six separate TuMV introductions to Australia. Spread of this B. napus resistance-breaking strain poses a significant threat to the B. napus oilseed industry. Breeding B. napus cultivars with resistance to this strain constitutes a critical priority for B. napus breeding programs in Australia and elsewhere.


2021 ◽  
Author(s):  
Zheng-Xing Song ◽  
Su-Jeong Chu ◽  
Eun-Young Seo ◽  
Wen-Xing Hu ◽  
Yong Pyo Lim ◽  
...  

Abstract Perilla is an annual herb with a unique aroma and taste and has been cultivated in Korea for hundreds of years. Owing to the highly edible and medicinal value of Perilla plants, it has been widely cultivated in many Asian and European countries. Recently, several viruses have been reported to cause diseases in Perilla in Korea, including turnip mosaic virus (TuMV) which is known as a brassica pathogen due to its significant damage to brassica crops. In this study, we determined the complete genome sequences of two new TuMV isolates originating from Perilla in Korea. Full-length infectious cDNA clones of these two isolates were constructed and their infectivity was tested by agroinfiltration on Nicotiana benthamiana and sap inoculation on Chinese cabbage and radish. In addition, we analyzed the phylogenetic relationship of six new Korean TuMV isolates and determined their respective affiliation with the four major groups. We also conducted recombination analysis for isolates recently occurring in Korean using RDP4 software, which provided new insight into the evolutionary relationships among Korean isolates of TuMV.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 430 ◽  
Author(s):  
Miroslav Glasa ◽  
Katarína Šoltys ◽  
Lukáš Predajňa ◽  
Nina Sihelská ◽  
Slavomíra Nováková ◽  
...  

In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.


2003 ◽  
Vol 107 (7) ◽  
pp. 1169-1173 ◽  
Author(s):  
S. L. Hughes ◽  
P. J. Hunter ◽  
A. G. Sharpe ◽  
M. J. Kearsey ◽  
D. J. Lydiate ◽  
...  

2002 ◽  
Vol 38 (SI 1 - 6th Conf EFPP 2002) ◽  
pp. S155-S157
Author(s):  
C.E. Jenner ◽  
F. Sánchez ◽  
K. Tomimura ◽  
K. Ohshima ◽  
F. Ponz ◽  
...  

Dominant resistance genes identified in Brassica napus lines are effective against some, but not all, Turnip mosaic virus<br />(TuMV) isolates. An infectious clone of an isolate (UK 1) was used as the basis of chimeric virus constructions using<br />resistance-breaking mutants and other isolates to identify the virulence determinants for three dominant resistance genes.<br />For the resistance gene TuRB01, the presence of either of two mutations affecting the cylindrical inclusion (CI) protein<br />converted the avirulent UK 1 to a virulent isolate. Acquisition of such mutations had a slight cost to viral fitness in<br />plants lacking the resistance gene. A similar strategy is being used to identify the virulence determinants for two more<br />resistance genes present in another B. napus line.


2019 ◽  
Vol 20 (7) ◽  
pp. 990-1004 ◽  
Author(s):  
Shu Wang ◽  
Kelei Han ◽  
Jiejun Peng ◽  
Jinping Zhao ◽  
Liangliang Jiang ◽  
...  

1999 ◽  
Vol 99 (7-8) ◽  
pp. 1149-1154 ◽  
Author(s):  
J. A. Walsh ◽  
A. G. Sharpe ◽  
C. E. Jenner ◽  
D. J. Lydiate

Sign in / Sign up

Export Citation Format

Share Document