scholarly journals Infection Processes and Involvement of Defense-Related Genes in the Expression of Resistance in Cultivars of Subterranean Clover (Trifolium subterraneum) to Phytophthora clandestina

2010 ◽  
Vol 100 (6) ◽  
pp. 551-559 ◽  
Author(s):  
X. Ma ◽  
Hua Li ◽  
K. Sivasithamparam ◽  
M. J. Barbetti

Studies on infection processes and gene expression were done to determine differential responses of cultivars of Trifolium subterraneum resistant and susceptible to infection by races of Phytophthora clandestina. In the infection process study, one race was inoculated onto the roots of T. subterraneum cvs. Woogenellup and Junee (compatible or incompatible interactions, respectively). There were no differences in relation to the processes of cyst attachment, germination, and hyphal penetration. There were, however, major differences in infection progression observed post-penetration between compatible and incompatible interactions. In susceptible cv. Woogenellup, hyphae grew into the vascular bundles and produced intercellular antheridia and oogonia in the cortex and stele by 4 days postinoculation (dpi), oospores in the cortex and stele by 8 dpi, when sporangia were evident on the surface of the root. Infected taproots were discolored. Early destruction of taproots prevented emergence of lateral roots. Roots of resistant cv. Junee showed no oospores or sporangia and no disease at 8 dpi. In the gene expression studies, two races of P. clandestina were inoculated onto three cultivars of T. subterraneum. Results showed that three genes known to be associated with plant defense against plant pathogens were differentially expressed in the roots during compatible and incompatible interactions. Phenylalanine ammonia lyase and chalcone synthase genes were activated 4 h postinoculation (hpi) and cytochrome P450 trans-cinnamic acid 4-monooxygenase gene was activated 8 hpi in the incompatible interactions in cvs. Denmark and Junee following inoculation with Race 177. In contrast, in compatible interactions in cv. Woogenellup, there were no significant changes in the activation of these three genes following inoculation, indicating that these three genes were associated with the expression of resistance to Race 177 of the pathogen by the host. To confirm this result, in the second test, cv. Woogenellup was challenged by Race 000 of P. clandestina. In this incompatible interaction, cv. Woogenellup was resistant and expressed highly all three genes in the manner similar to the incompatible interactions observed in the first test.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kim Hoa Ho ◽  
Annarita Patrizi

AbstractChoroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Matuszewska ◽  
Tomasz Maciąg ◽  
Magdalena Rajewska ◽  
Aldona Wierzbicka ◽  
Sylwia Jafra

AbstractPseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lalit Sharma ◽  
Aditi Sharma ◽  
Ashutosh Kumar Dash ◽  
Gopal Singh Bisht ◽  
Girdhari Lal Gupta

Abstract Background Alcohol abuse is a major problem worldwide and it affects people’s health and economy. There is a relapse in alcohol intake due to alcohol withdrawal. Alcohol withdrawal anxiety-like behavior is a symptom that appears 6–24 h after the last alcohol ingestion. Methods The present study was designed to explore the protective effect of a standardized polyherbal preparation POL-6 in ethanol withdrawal anxiety in Wistar rats. POL-6 was prepared by mixing the dried extracts of six plants Bacopa monnieri, Hypericum perforatum, Centella asiatica, Withania somnifera, Camellia sinesis, and Ocimum sanctum in the proportion 2:1:2:2:1:2 respectively. POL-6 was subjected to phytochemical profiling through LC-MS, HPLC, and HPTLC. The effect of POL-6 on alcohol withdrawal anxiety was tested using a two-bottle choice drinking paradigm model giving animals’ free choice between alcohol and water for 15 days. Alcohol was withdrawn on the 16th day and POL-6 (20, 50, and 100 mg/kg, oral), diazepam (2 mg/kg) treatment was given on the withdrawal days. Behavioral parameters were tested using EPM and LDT. On the 18th day blood was collected from the retro-orbital sinus of the rats and alcohol markers ALT, AST, ALP, and GGT were studied. At end of the study, animals were sacrificed and the brain was isolated for exploring the influences of POL-6 on the mRNA expression of GABAA receptor subunits in the amygdala and hippocampus. Results Phytochemical profiling showed that POL-6 contains major phytoconstituents like withaferin A, quercetin, catechin, rutin, caeffic acid, and β-sitosterol. In-vivo studies showed that POL-6 possesses an antianxiety effect in alcohol withdrawal. Gene expression studies on the isolated brain tissues showed that POL-6 normalizes the GABAergic transmission in the amygdala and hippocampus of the rats. Conclusion The study concludes that POL-6 may have therapeutic potential for treating ethanol-type dependence.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aliki Xanthopoulou ◽  
Javier Montero-Pau ◽  
Belén Picó ◽  
Panagiotis Boumpas ◽  
Eleni Tsaliki ◽  
...  

Abstract Background Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. Results In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. Conclusions These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


Sign in / Sign up

Export Citation Format

Share Document