NL-3 K Strain Is a Stable and Naturally Occurring Interspecific Recombinant Derived from Bean common mosaic necrosis virus and Bean common mosaic virus

2005 ◽  
Vol 95 (9) ◽  
pp. 1037-1042 ◽  
Author(s):  
Richard C. Larsen ◽  
Phillip N. Miklas ◽  
Keri L. Druffel ◽  
Stephen D. Wyatt

A strain of Bean common mosaic necrosis virus (BCMNV) from Idaho was identified by enzyme-linked immunosorbent assay using monoclonal antibodies and determined to be similar to the NL-3 D strain (of Drifjhout) by reaction of differential bean cultivars. However, this BCMNV strain (designated NL-3 K) caused earlier and more severe symptoms on bean plants representing host groups 0, 4, and 5. The nucleotide sequence encoding the predicted polyprotein of NL-3 K was 9,893 nucleotides (nt) in length, yielding a peptide with a molecular size of 362.1 kDa compared with a 9,626-nt, 350.9-kDa polyprotein for NL-3 D. Sequence analysis of the putative P1 protein suggests that the NL-3 K strain is a recombinant between NL-3 D and the Russian strain (RU1) of Bean common mosaic virus. The P1 protein of NL-3 K consisted of 415 amino acids compared with 317 for NL-3 D. The first 114 predicted amino acids of the NL-3 K P1 region were 98% identical with RU1. The remaining 301 amino acids of the protein shared only 34% identity with RU1 but were 98% identical with NL-3 D. Primers were designed that flanked the recombination point in the P1 coding sequence of NL-3 K. An amplicon of the expected size was produced by reverse-transcriptase polymerase chain reaction of total nucleic acid extracts of bean plants inoculated with NL-3 K, but not from those with NL-3 D or RU1. The increased symptom severity on selected common bean lines induced by NL-3 K suggests that the P1 gene may play a significant role in pathogenicity and virulence.

Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 923-923 ◽  
Author(s):  
N. Flores-Estévez ◽  
L. Silva-Rosales ◽  
J. A. Acosta-Gallegos

Bean common mosaic necrosis virus (BCMNV) is a pathogen of Phaseolus vulgaris L. BCMNV was previously classified in serogroup A (for necrotic strains) of the Bean common mosaic virus (BCMV) subgroup; serogroup B included non-necrotic strains of BCMV. Both serogroups are currently classified as two different species in the BCMV subgroup of the Poytvirus genus; strains of either species will produce mosaic symptoms and, in the presence of hypersensitive I gene, necrosis in bean plants (1). Prior to this classification, BCMV was reported in Mexico by the presence of mosaic and necrotic symptoms (2). To investigate the presence of BCMNV in Mexico, samples were collected in two of the main bean producing states. The total extracted RNA was used for reverse transcription polymerase chain reaction using primers complementary to the middle portion of the NIa gene (5') and the 3' UTR of the NL3 Michigan isolate (accession number U19287). Two cDNA segments of 2 and 3 kb were obtained from infected plants from the state of Aguascalientes, in the highlands of central Mexico, and from the state of Veracruz, in the lowlands of the Gulf of Mexico, respectively. The cDNAs were cloned and sequenced. Alignment analysis of these sequences with the NL3 strain of BCMNV showed a similarity of 96.4 and 96.7%, respectively. The similarity between the Aguascalientes (accession number AJ01265) and Veracruz isolates was 99.6%, indicating that both are variants of the same species. On the other hand, alignment analysis of these isolates with some published BCMV strain sequences (i.e., accession numbers L15332 and U55315) displayed low similarities of 52.9 and 64.4%, respectively. These comparisons indicate that the Aguascalientes and Veracruz viral isolates belong to the BCMNV species and is the causal agent of mosaic and necrosis observed on the bean plants in those states. References: (1) C. W. Collmer et al. Mol. Plant-Microbe Interact. 9:758, 1996. (2) E. Jimenez-García. SARH. Mexico. D. F. pp: 3–4, 1994.


2021 ◽  
Vol 20 (6) ◽  
pp. 7-18
Author(s):  
İlyas Deligoz ◽  
Miray Arlı-Sökmen ◽  
Mucella Tekeoglu

Bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV) are among the most economically important virus species infecting common bean. The use of resistant plant cultivars is the most effective way to control these viruses. National dry bean breeding studies have been conducted by seven different governmental agricultural research institutes in Turkey, and advanced breeding lines have been developed by using the selected local dry bean populations and crossing studies. In this study, 204 breeding lines were tested for resistance levels to BCMV and BCMNV. Initially, BCMNV NL-3 and BCMV NL-4 strains were individually sap-inoculated onto the leaves of bean plants belonging to each breeding lines with 10 replications, and the reactions of plants were evaluated for symptomatic appearance of virus infection 21 days after inoculation. Additionally, phenotypic evaluation was confirmed by molecular markers linked to resistance genes. As a result of the study, 153 breeding lines were found to involve the dominant I gene whereas four and five of the tested lines had the recessive genes bc-1² and bc-2², respectively. In conclusion, it was emphasized that these breeding lines could be registered after evaluating them in terms of yield and quality. Also, the use of seeds of the resistant lines to supply the source of virus-resistance in breeding studies and maintaining their seeds at the national genebank were recommended.


Plant Disease ◽  
2004 ◽  
Vol 88 (2) ◽  
pp. 119-124 ◽  
Author(s):  
M. Grisoni ◽  
F. Davidson ◽  
C. Hyrondelle ◽  
K. Farreyrol ◽  
M. L. Caruana ◽  
...  

A survey was carried out to identify the viruses infecting vanilla in French Polynesia and to assess their incidence. Virus identification was based on enzyme-linked immunosorbent assay (ELISA) and, for potyviruses, on the sequence of part of the coat protein and inoculation assays. Between 1998 and 1999, 3,610 vanilla plants from 49 plots in the Society Islands were indexed. Cymbidium mosaic virus (CymMV) was detected in 500 vines from 10 plots in the Leeward Islands. The data suggest that this virus has spread widely since its first detection in French Polynesia in 1986, most likely through the dissemination of symptomless infected cuttings. Viruses belonging to the Potyvirus genus were found in 674 plants from 27 plots in the four islands surveyed. Three distinct potyviruses have been identified: (i) Vanilla mosaic virus, (ii) Watermelon mosaic virus, and (iii) and a virus related to Bean common mosaic virus. The symptoms induced on Vanilla tahitensis by the three potyviruses can be differentiated from each other and from those due to CymMV. A significant proportion of the plants surveyed (97/476) were symptomatic but tested negative by ELISA for CymMV and the Potyvirus group. Odontoglossum ringspot virus was not detected in any sample tested.


2015 ◽  
pp. 1-46 ◽  
Author(s):  
Elizabeth A. Worrall ◽  
Francis O. Wamonje ◽  
Gerardine Mukeshimana ◽  
Jagger J.W. Harvey ◽  
John P. Carr ◽  
...  

1994 ◽  
Vol 138 (1-2) ◽  
pp. 95-104 ◽  
Author(s):  
J. A. Khan ◽  
H. Lohuis ◽  
R. W. Goldbach ◽  
J. Dijkstra

Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1162-1162 ◽  
Author(s):  
E. Segundo ◽  
F. M. Gil-Salas ◽  
D. Janssen ◽  
G. Martin ◽  
I. M. Cuadrado ◽  
...  

Common bean (Phaseolus vulgaris L.) is grown on approximately 1,500 ha in commercial greenhouses and is of major economic importance in the Souss-Massa Region, Agadir, Morocco. Since October 2003, symptoms resembling a viral disease, consisting of pod mosaic and distortion and mild to severe mosaic in leaves, have been observed on bean plants in several greenhouses. Mechanical inoculation with symptomatic leaf extracts produced necrotic local lesions on P. vulgaris ‘Pinto’ and systemic symptoms similar to those observed in the naturally infected bean plants P. vulgaris ‘Donna’ (five plants per cultivar). Inoculated and naturally infected samples reacted positively using a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to Southern bean mosaic virus (SBMV) (DSMZ, Braunschweig, Germany), a member of the Sobemovirus genus that is transmitted by contact, soil, beetles, and seeds (1). Virions purified from a naturally infected ‘Donna’ plant contained a 30-kDa polypeptide that reacted positively using sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis with SBMV antiserum (DSMZ). Reverse transcription-polymerase chain reaction amplification with SMBV primers as described by Verhoeven et al. (2) produced an expected 870-bp band. The amplicon was cloned, sequenced (GenBank Accession No. AJ748276), and compared to those isolates available in GenBank and had a nucleotide sequence identity of 87% and a derived amino acid sequence identity of 95% with an SBMV isolate from Spain (2). During a survey in different areas of the Souss-Massa Region, 20 symptomatic leaf and pod samples were randomly collected from 12 greenhouses (50 ha) where significant commercial losses were suffered because of this virus disease, and all samples were positive using DAS-ELISA for SBMV. To our knowledge, this is the first report of SBMV in Morocco. References: (1) J. H. Tremaine and R. I. Hamilton. Southern bean mosaic virus. No. 274 in: Descriptions of Plant Viruses. CMI/AAB, Kew, Surrey, England, 1983. (2) J. Th. J. Verhoeven et al. Eur. J. Plant Pathol. 109:935, 2003.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Asma Mohammed Saeed Al-Kubati ◽  
Baoshan Kang ◽  
Liming Liu ◽  
Aqleem Abbas ◽  
Qinsheng Gu

Zucchini yellow mosaic virus (ZYMV) causes serious damage to cucurbit crops worldwide and can be spread by aphids, by mechanical injury, and in seeds. With the popularization of cucurbit grafting, the use of susceptible rootstock has increased the risk of ZYMV infection in cucurbit crops. In China, the bottle gourd (Lagenaria siceraria) is a widely used rootstock in grafted watermelon production. However, few resistant bottle gourds are available commercially. This study developed bottle gourd lines resistant to ZYMV using ethyl methanesulfonate (EMS) mutagenesis. A new mutated bottle gourd population (M1) was generated by treating seeds with EMS. Diverse phenotypes were observed in the seedlings, flowers, and fruit of M2 plants, some of which are of potential commercial interest, such as dwarfing and different fruit shapes. Based on the M2 phenotypes, 106 M3 lines were selected and screened for resistance to ZYMV by mechanical inoculation and agroinfiltration. Nine M3 lines were resistant to ZYMV during three tests. One inbred M4 line (177-8) was developed and showed stable resistance and no virus when tested using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and polymerase chain reaction. These resistant lines are promising materials for developing watermelon rootstock and exploring resistance genes as new ZYMV-resistant resources. EMS induction could be a practical strategy for creating resistant cucurbit crops.


2000 ◽  
Vol 13 (11) ◽  
pp. 1266-1270 ◽  
Author(s):  
Candace Whitmer Collmer ◽  
Marcia Fisher Marston ◽  
Jessica C. Taylor ◽  
Molly Jahn

The resistance to the potyvirus Bean common mosaic virus (BCMV) conferred by the I allele in cultivars of Phaseolus vulgaris has been characterized as dominant, and it has been associated with both immunity and a systemic vascular necrosis in infected bean plants under field, as well as controlled, conditions. In our attempts to understand more fully the nature of the interaction between bean with the I resistance allele and the pathogen BCMV, we carefully varied both I allele dosage and temperature and observed the resulting, varying resistance responses. We report here that the I allele in the bean cultivars we studied is not dominant, but rather incompletely dominant, and that the system can be manipulated to show in plants a continuum of response to BCMV that ranges from immunity or extreme resistance, to hypersensitive resistance, to systemic phloem necrosis (and subsequent plant death). We propose that the particular phenotypic outcome in bean results from a quantitative interaction between viral pathogen and plant host that can be altered to favor one or the other by manipulating I allele dosage, temperature, viral pathogen, or plant cultivar.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 21-25 ◽  
Author(s):  
N. Flores-Estévez ◽  
J. A. Acosta-Gallegos ◽  
L. Silva-Rosales

A survey was performed in Mexico to study the distribution of Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) using a set of primers directed to the coat protein gene (CP) that were designed to detect and characterize the two viral species. Both viral species were present in different locations in the country. BCMV was predominant in the central states of the country, whereas BCMNV proliferated toward the eastern tropical states. The alignment of nine nucleotide sequences for each viral species at the amino region of the CP gene confirmed the identities of the viruses and set the basis to assign them tentatively to pathogroups I, II, and VI.


Sign in / Sign up

Export Citation Format

Share Document