scholarly journals Identification and Characterization of a Novel Whitefly-Transmitted Member of the Family Potyviridae Isolated from Cucurbits in Florida

2007 ◽  
Vol 97 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Scott Adkins ◽  
Susan E. Webb ◽  
Diann Achor ◽  
Pamela D. Roberts ◽  
Carlye A. Baker

A novel whitefly-transmitted member of the family Potyviridae was isolated from a squash plant (Cucurbita pepo) with vein yellowing symptoms in Florida. The virus, for which the name Squash vein yellowing virus (SqVYV) is proposed, has flexuous rod-shaped particles of ≈840 nm in length. The experimental host range was limited to species in the family Cucurbitaceae, with the most dramatic symptoms observed in squash and watermelon, but excluded all tested species in the families Amaranthaceae, Apocynaceae, Asteraceae, Chenopodiaceae, Fabaceae, Malvaceae, and Solanaceae. The virus was transmitted by whiteflies (Bemisia tabaci) but was not transmitted by aphids (Myzus persicae). Infection by SqVYV induced inclusion bodies visible by electron and light microscopy that were characteristic of members of the family Potyviridae. Comparison of the SqVYV coat protein gene and protein sequences with those of recognized members of the family Potyviridae indicate that it is a novel member of the genus Ipomovirus. A limited survey revealed that SqVYV also was present in watermelon plants suffering from a vine decline and fruit rot recently observed in Florida and was sufficient to induce these symptoms in greenhouse-grown watermelon, suggesting that SqVYV is the likely cause of this disease.

2014 ◽  
Vol 81 (5) ◽  
pp. 1700-1707 ◽  
Author(s):  
Julia Otte ◽  
Achim Mall ◽  
Daniel M. Schubert ◽  
Martin Könneke ◽  
Ivan A. Berg

ABSTRACTThe recently described ammonia-oxidizing archaea of the phylumThaumarchaeotaare highly abundant in marine, geothermal, and terrestrial environments. All characterized representatives of this phylum are aerobic chemolithoautotrophic ammonia oxidizers assimilating inorganic carbon via a recently described thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. Although some genes coding for the enzymes of this cycle have been identified in the genomes ofThaumarchaeota, many other genes of the cycle are not homologous to the characterized enzymes from other species and can therefore not be identified bioinformatically. Here we report the identification and characterization of malonic semialdehyde reductase Nmar_1110 in the cultured marine thaumarchaeonNitrosopumilus maritimus. This enzyme, which catalyzes the reduction of malonic semialdehyde with NAD(P)H to 3-hydroxypropionate, belongs to the family of iron-containing alcohol dehydrogenases and is not homologous to malonic semialdehyde reductases fromChloroflexus aurantiacusandMetallosphaera sedula. It is highly specific to malonic semialdehyde (Km, 0.11 mM;Vmax, 86.9 μmol min−1mg−1of protein) and exhibits only low activity with succinic semialdehyde (Km, 4.26 mM;Vmax, 18.5 μmol min−1mg−1of protein). Homologues ofN. maritimusmalonic semialdehyde reductase can be found in the genomes of allThaumarchaeotasequenced so far and form a well-defined cluster in the phylogenetic tree of iron-containing alcohol dehydrogenases. We conclude that malonic semialdehyde reductase can be regarded as a characteristic enzyme for the thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle.


1990 ◽  
Vol 18 (16) ◽  
pp. 4695-4701 ◽  
Author(s):  
David E. Szymkowski ◽  
Reginald A. Deering

2009 ◽  
Vol 53 (10) ◽  
pp. 4320-4326 ◽  
Author(s):  
Boukaré Zeba ◽  
Filomena De Luca ◽  
Alain Dubus ◽  
Michael Delmarcelle ◽  
Jacques Simporé ◽  
...  

ABSTRACT The genus Chryseobacterium and other genera belonging to the family Flavobacteriaceae include organisms that can behave as human pathogens and are known to cause different kinds of infections. Several species of Flavobacteriaceae, including Chryseobacterium indologenes, are naturally resistant to β-lactam antibiotics (including carbapenems), due to the production of a resident metallo-β-lactamase. Although C. indologenes presently constitutes a limited clinical threat, the incidence of infections caused by this organism is increasing in some settings, where isolates that exhibit multidrug resistance phenotypes (including resistance to aminoglycosides and quinolones) have been detected. Here, we report the identification and characterization of a new IND-type variant from a C. indologenes isolate from Burkina Faso that is resistant to β-lactams and aminoglycosides. The levels of sequence identity of the new variant to other IND-type metallo-β-lactamases range between 72 and 90% (for IND-4 and IND-5, respectively). The purified enzyme exhibited N-terminal heterogeneity and a posttranslational modification consisting of the presence of a pyroglutamate residue at the N terminus. IND-6 shows a broad substrate profile, with overall higher turnover rates than IND-5 and higher activities than IND-2 and IND-5 against ceftazidime and cefepime.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 293-301 ◽  
Author(s):  
Rose B. McGee ◽  
Kim E. Nichols

AbstractThe last 30 years have witnessed tremendous advances in our understanding of the cancer genetic susceptibility syndromes, including those that predispose to hematopoietic malignancies. The identification and characterization of families affected by these syndromes is enhancing our knowledge of the oncologic and nononcologic manifestations associated with predisposing germ line mutations and providing insights into the underlying disease mechanisms. Here, we provide an overview of the cancer genetic susceptibility syndromes, focusing on aspects relevant to the evaluation of patients with leukemia and lymphoma. Guidance is provided to facilitate recognition of these syndromes by hematologists/oncologists, including descriptions of the family history features, tumor genotype, and physical or developmental findings that should raise concern for an underlying cancer genetic syndrome. The clinical implications and management challenges associated with cancer susceptibility syndromes are also discussed.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Lisa M. Keith ◽  
Maile E. Velasquez ◽  
Francis T. Zee

Guava is one of the most widely grown plants in the tropics; however, it is affected by many fruit rot diseases. Fruit diseases decrease the marketability of fresh fruit and fruit for processing. A survey of scab disease was conducted at the USDA/ARS Tropical Plant Genetic Resource Management Unit in Hilo, HI, where more than 50 accessions of guava are grown. Symptoms observed were gray/light brown lesions surrounded by dark brown borders on leaves and brown, raised, corky, necrotic lesions on the exocarp of fruit which progressed as the fruits matured. Seventeen isolates from infected fruit, six isolates from lesions on leaves, and nine isolates from additional crops surrounding the guava trees were collected. The main fungi consistently isolated from symptomatic leaves and fruit were Pestalotiopsis spp. Morphology, colony characteristics, and pathogenicity of the isolates were examined and potential sources of host resistance were identified for germplasm characterization studies. Molecular methods were used to identify four Pestalotiopsis taxa (P. clavispora, P. microspora, P. sp. GJ-1, and P. disseminata) on guava in Hawaii. To our knowledge, this is the first report of traditional and molecular methods of identification and characterization being used for fungal pathogens of guava in Hawaii.


Sign in / Sign up

Export Citation Format

Share Document