Identification and characterization of Aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV–Vis spectroscopy

Author(s):  
F.A. Saif ◽  
S.A. Yaseen ◽  
A.S. Alameen ◽  
S.B. Mane ◽  
P.B. Undre
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1869
Author(s):  
A K M Mashud Alam ◽  
Donovan Jenks ◽  
George A. Kraus ◽  
Chunhui Xiang

Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2007 ◽  
Vol 124-126 ◽  
pp. 287-290 ◽  
Author(s):  
Fei Liu ◽  
Yong Jun He ◽  
Jeung Soo Huh

The nano-CeO2 was synthesized by two-step solid-phase reaction. The image of TEM showed that nano-CeO2 with an average size of about 70 nm. The series of polyaniline/nano-CeO2 composites with different PANi: CeO2 ratios were prepared by in-situ polymerization in the presence of hydrochloric acid (HCl) as dopant by adding nano-CeO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by FT-IR and UV-vis spectroscopy analysis. The FT-IR spectra of nanocomposites indicate different blue-shifts, attributed to C–N stretching mode for benzenoid unit. The UV-vis spectra of nanocomposites display einstein-shifts compared with PANi at 620nm. The conductivity properties of the composites are also changed compare to the pure PANi. These results suggest that the interactions between the polymer matrix and nanoparticles take place in polyaniline/nano- CeO2 composites.


2021 ◽  
Author(s):  
Govindaraju K ◽  
K. Vijai Anand ◽  
S. Muthamilselvan ◽  
M. Kannan ◽  
M. Elanchezhiyan

Abstract In this study, a simple environmental benign approach have been adopted for the preparation of highly luminescent (blue emitting) water soluble carbon nano-dots using Pongammia pinnata (Pp) leaves via hydrothermal technique. The prepared Pp-carbon nano- dots were characterized using UV-vis spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The Pp-carbon nano-dots are spherical in shape with an average size of 32 nm.


Author(s):  
Souza Felício ◽  
Henrique Santana

Biofilms were obtained from cocoons of the silkworm, Bombyx mori, involving the removal of sericin, extraction and solubilization of fibroin fibers, dialysis of fibroin dispersions and preparation of biofilms by the casting process. Biofilm transparency was verified by UV-Vis spectroscopy and thermal stability by thermogravimetric/differential scanning calorimetry (TG/DSC). Soon after preparation, the solidification of the fibroin solution prepared from the cocoons and extracted by the Ajisawa method was monitored until the biofilm stabilized, using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR FT-IR) as a function of time. The results showed that there is a change in the conformation from the silk I structure (?-helix) to silk II (?-sheet). In order to improve the characterization of the biofilms obtained by the Ajisawa method and LiBr solubilization of fibroin fibers, Raman spectroscopy was used to verify stabilization of the different possible molecular conformations for the fibers in these materials, by comparison with the cocoon spectra and those of the solid (freeze-dried hydrogel) precipitated by dialysis for 72 h. By comparing the Raman spectra of the biofilms in terms of the intensities of the broadened band characteristic of amide I, it was possible to assess the conformational changes in both materials based on possible transitions between ?-sheet conformations and flexible ?-helix and ?-turn structures. The results showed a dispersion of these conformations in the biofilms generated and in the solid freeze-dried hydrogel spectrum, and the ?-sheet conformation was found to be predominant. The TG and DSC curves showed that the materials with higher ?-sheet content exhibited higher thermal resistance. Thus, the data obtained further elucidate the properties of these materials which are widely used in various processes.


2019 ◽  
Vol 37 (3) ◽  
pp. 304-309
Author(s):  
Azeezaa Varsha Mohammed ◽  
Suresh Sagadevan

AbstractL-cysteine hydrogen fluoride (LCHF) single crystals were grown from aqueous solution. Single crystal X-ray diffraction, FT-IR, UV-Vis-NIR, and TG-DTA were used to test the grown crystals. The specimen dielectric and mechanical behaviors were also studied. Powder X-ray diffraction of the grown crystal was recorded and indexed. The optical properties of the LCHF crystal were determined using UV-Vis spectroscopy. It was found that the optical band gap of LCHF was 4.8 eV. The crystal functional groups were identified using FT-IR. Second harmonic generation (SHG) efficiency of the LCHF was three times higher than that of KDP. The dielectric constant, dielectric loss and AC conductivity were measured at different frequencies and temperatures.


Author(s):  
Saifaldeen Muwafag Abdalhadi ◽  
Asmaa Yahya Al-Baitai ◽  
Hazim Abdulrazzaq Al-Zubaidi

In a one-pot reaction, three new 2,3-diaminomaleonitrile (DAMN) derivative dyes were prepared by simple Schiff base reaction. The compounds were designed as a sensitizer in dye synthesizes solar cells (DSSCs). Many conditions have been used to provide the methodology to get the best yield. The prepared dyes were characterized by melting point, elemental microanalysis, mass spectroscopy, FT-IR, 1H-NMR, and UV-Vis spectroscopy. A computational study was carried out to support our results. The DSSC data was shown the best performance for SA3 dye with 0.38% efficiency at AM 1.5 then SA2 with 0.22% and the last dye is SA1 with 0.09%, compared to control cell (N719) 5.4%.


Author(s):  
Jisen Zhao ◽  
Yang Yu ◽  
Wang Yan ◽  
Shujie Cheng

IntroductionOne of the simplest nanostructures that is widely used in industry today is metallic nanoparticles. Metallic ‎nanoparticles can bind non-destructively to single-stranded DNA, which are important in medical diagnostics. ‎Cancer nanotechnology developed a new area of integrative research in biology, chemistry, engineering, and ‎medicine, and is concerned with major advances in cancer diagnosis, prevention and treatment ‎Material and methods‎ In the recent study, the structural and morphological characterization of bio‐synthesized FeNPs@Calendula ‎arvensis was performed by FT-IR and UV-vis spectroscopy, scanning electron microscopy (SEM) that SEM ‎images have exhibited an equal and uniform spherical morphology in size of 30.13 nm. ‎ResultsIn the antioxidant test, the IC50 of FeNPs@Calendula arvensis and BHT against DPPH free radicals were 117 ‎and 88 µg/mL, respectively. In the anticancer test, the treated cells with FeNPs@Calendula arvensis were ‎assessed by MTT assay for 48h about the anti-human cholangiocarcinoma and ‎ cytotoxicity properties on normal ‎‎(HUVEC) and cholangiocarcinoma ‎ carcinoma cell lines i.e., HCM-CSHL-0174-C22, CCLP-1, and QBC939. ‎The IC50 of FeNPs@Calendula arvensis were 196, 237, and 278 µg/mL against HCM-CSHL-0174-C22, ‎CCLP-1, and QBC939‎ cell lines, respectively. The viability of cholangiocarcinoma cell line reduced dose-‎dependently in the presence of FeNPs@Calendula arvensis.‎ConclusionsIt appears that the anti-human cholangiocarcinoma effect of FeNPs@Calendula arvensis is due to their ‎antioxidant effects.‎


2013 ◽  
Vol 829 ◽  
pp. 643-648
Author(s):  
Mahdi Mirzababaei ◽  
Hossein Behniafar ◽  
Hamid Hashemimoghadam

In the present work, we have focused on the synthesis and characterization of Polystyrene (PS) nanocomposites incorporated with anatase-TiO2. The nanoTiO2particles were used in two forms including surface modified (mod TiO2) and surface unmodified (unmod TiO2). Accordingly, two PS/TiO2nanocomposites were synthesized, i.e. (PS/mod TiO2) and (PS/unmod TiO2), starting from styrene monomer in the presence of sodium dodecylsulfate (SDS) emulsifier. 4,4-Methylene diphenyldiisocyanate (4,4-MDI) was used for the surface modification of the nanoTiO2particles via urethanation reaction with terminal OH groups. After modification, optical behavior of the samples was determined. The chemical structure of pure polystyrene (pure-PS), (mod TiO2), (PS/mod TiO2), and (PS/unmod TiO2) was confirmed by FT-IR spectroscopy. X-ray diffraction (XRD) analyses obviously showed the broad peak related to the (pure-PS) centered at 2θ of 20 ° as well as the sharp characteristic peak of the TiO2nanoparticles appeared at about 2θ of 25 °. Moreover, diffuse reflectance UV/vis spectroscopy analyses, (mod TiO2) and (PS/mod TiO2) samples showed strong visible absorption at the range of 400 to 600 nm.


Sign in / Sign up

Export Citation Format

Share Document