scholarly journals Genetic Structure of Cronartium ribicola Populations in Eastern Canada

1999 ◽  
Vol 89 (10) ◽  
pp. 915-919 ◽  
Author(s):  
K. Et-touil ◽  
L. Bernier ◽  
J. Beaulieu ◽  
J. A. Bérubé ◽  
A. Hopkin ◽  
...  

The genetic structure of populations of Cronartium ribicola was studied by sampling nine populations from five provinces in eastern Canada and generating DNA profiles using nine random amplified polymorphic DNA markers. Most of the total gene diversity (Ht = 0.386) was present within populations (Hw = 0.370), resulting in a low level of genetic differentiation among populations in northeastern North America (Fst = 0.062). A hierarchical analysis of genetic structure using an analysis of molecular variance (AMOVA) revealed no statistically significant genetic differentiation among provinces or among regions. Yet, genetic differentiation among populations within regions or provinces was small (AMOVA φst = 0.078) but statistically significant (P < 0.001) and was several orders of magnitude larger than differentiation among provinces. This is consistent with a scenario of subpopulations within a metapopulation, in which random drift following migration and new colonization are major evolutionary forces. A phenetic analysis using genetic distances revealed no apparent correlation between genetic distance and the province of origin of the populations. The hypothesis of isolation-by-distance in the eastern populations of C. ribicola was rejected by computing Mantel correlation coefficients between genetic and geographic distance matrices (P > 0.05). These results show that eastern Canadian provinces are part of the same white pine blister rust epidemiological unit. Nursery distribution systems are controlled provincially, with virtually no seedling movement among provinces; therefore, infected nursery material may not play an important role in the dissemination of this disease. Long-distance spore dispersal across provincial boundaries appears to be an epidemiologically important factor for this pathogen.

2005 ◽  
Vol 95 (6) ◽  
pp. 517-526 ◽  
Author(s):  
A.J. Lowe ◽  
B.J. Hicks ◽  
K. Worley ◽  
R.A. Ennos ◽  
J.D. Morman ◽  
...  

AbstractPine beauty moth, Panolis flammea (Denis & Schiffermüller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (FST = 0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.


2002 ◽  
Vol 92 (6) ◽  
pp. 580-589 ◽  
Author(s):  
George S. Mahuku ◽  
María Antonia Henríquez ◽  
Jaime Munõz ◽  
Robin A. Buruchara

Coevolution of the angular leaf spot pathogen, Phaeoisariopsis griseola, with its common bean host has been demonstrated, and P. griseola isolates have been divided into Andean and Mesoamerican groups that correspond to defined bean gene pools. Recent characterization of P. griseola isolates from Africa has identified a group of isolates classified as Andean using random amplified polymorphic DNA (RAPD), but which are able to infect some Mesoamerican differential varieties. These isolates, designated Afro-Andean, have been identified only in Africa. Random amplified microsatellites, RAPD, and restriction digestion of amplified ribosomal intergenic spacer region were used to elucidate the relationships among the Afro-Andean, Andean, and Mesoamerican groups of P. griseola. Cluster and multiple correspondence analysis of molecular data separated isolates into Andean and Meso-american groups, and the Afro-Andean isolates clustered with Andean isolates. Analysis of molecular variance ascribed 2.8% of the total genetic variation to differences between Afro-Andean and Andean isolates from Africa. Gene diversity analysis revealed no genetic differentiation (GST = 0.004) between Afro-Andean and Andean isolates from Africa. However, significant levels of genetic differentiation (GST = 0.39) were observed between Afro-Andean or Andean isolates from Africa and Andean isolates from Latin America, revealing significant geographical differentiation within the Andean lineage. Results from this study showed that Afro-Andean isolates do not constitute a new P. griseola group and do not represent long-term evolution of the pathogen genome, but rather are likely the consequents of point mutations in genes for virulence. This finding has significant implications in the deployment of resistant bean genotypes.


2010 ◽  
Vol 100 (5) ◽  
pp. 521-527 ◽  
Author(s):  
K.M. Mikac ◽  
N.N. FitzSimmons

AbstractMicrosatellite markers were used to investigate the genetic structure among invasive L. decolor populations from Australia and a single international population from Kansas, USA to determine patterns of dispersal. Six variable microsatellites displayed an average of 2.5–4.2 alleles per locus per population. Observed (HO) heterozygosity ranged from 0.12–0.65 per locus within populations; but, in 13 of 36 tests, HO was less than expected. Despite low levels of allelic diversity, genetic structure estimated as θ was significant for all pairwise comparisons between populations (θ=0.05–0.23). Due to suspected null alleles at four loci, ENA (excluding null alleles) corrected FST estimates were calculated overall and for pairwise population comparisons. The ENA-corrected FST values (0.02–0.10) revealed significant overall genetic structure, but none of the pairwise values were significantly different from zero. A Mantel test of isolation by distance indicated no relationship between genetic structure and geographic distance among all populations (r2=0.12, P=0.18) and for Australian populations only (r2=0.19, P=0.44), suggesting that IBD does not describe the pattern of gene flow among populations. This study supports a hypothesis of long distance dispersal by L. decolor at moderate to potentially high levels.


2020 ◽  
Vol 13 ◽  
pp. 194008292094917
Author(s):  
Misael D. Mancilla-Morales ◽  
Santiago Romero-Fernández ◽  
Araceli Contreras-Rodríguez ◽  
José J. Flores-Martínez ◽  
Víctor Sánchez-Cordero ◽  
...  

Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel ( Hydrobates melania) and the Least Storm-Petrel ( Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1– FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.


2010 ◽  
Vol 67 (11) ◽  
pp. 1827-1839 ◽  
Author(s):  
Patrick M. Gaffney ◽  
Carita M. Pascal ◽  
Jeffery Barnhart ◽  
W. Stewart Grant ◽  
James E. Seeb

We assessed genetic differentiation among populations of weathervane scallop ( Patinopecten caurinus ) in the northeastern Pacific, extending over 2500 km in the Gulf of Alaska and southeastern Bering Sea. Variability was surveyed at nuclear loci with allozyme, microsatellite, and single nucleotide polymorphism (SNP) methods, and at mitochondrial (mt)DNA loci with SNPs and nucleotide sequencing. High levels of gene diversity were detected for allozymes (H = 0.080), microsatellites (H = 0.734), and mtDNA (h = 0.781). Genotypes at nuclear loci generally fit Hardy–Weinberg proportions, except for some microsatellite loci, for which null-allele frequencies of 0.02 to 0.34 were estimated. No allele-frequency differences were detected among samples, except for the allozyme loci Gpi and Pep-4. Overall levels of differentiation ranged from FST = 0.0004 for allozymes, FST = 0.0008 for mtDNA to FST = 0.0004 for microsatellites. No isolation by distance was found for any of the markers. A unimodal mtDNA mismatch distribution and significant excesses of low-frequency variants for allozymes, microsatellites, and mtDNA may reflect a post-glacial population expansion. The lack of genetic differentiation measured by neutral markers does not preclude the existence of locally adapted, self-sustaining populations that are important in the harvest management of this species.


2009 ◽  
Vol 23 (4) ◽  
pp. 1180-1185 ◽  
Author(s):  
Fábio de Almeida Vieira ◽  
Dulcinéia de Carvalho

We studied patterns of genetic differentiation in a connected landscape with an interesting history of human habitat conversion that began two centuries ago, during the Brazilian colonization period. In the fragments of Brazilian Atlantic seasonal forest and corridors of secondary forest, Protium spruceanum is an abundant native, mass-flowering/insect-pollinated and bird-dispersed tree. Genetic diversity was analyzed from 230 individuals in five fragments (1 to 11.8 ha) and four corridors (460 to 1000 m length) using allozyme loci. We did not find evidence of inbreeding within fragments or corridors, but the proportion of heterozygotes (<IMG SRC="/img/revistas/abb/v23n4/a28simb1.gif" WIDTH=287 HEIGHT=96>) were significantly higher in fragments than in the secondary vegetation corridors, based on Goudet's G-test (P = 0.036). Genetic differentiation was low and no pattern of isolation by distance was detected. All fragments generally present low historical genetic differentiation with corridors that they are connected, indicating possible gene flow via seeds and pollen. Due to the consistently low differentiation observed among them and the absence of a significant reduction in gene diversity in second-growth forests, we conclude that corridors of second-growth forests would be an important alternative in the genetic connection of isolated forest fragments.


2021 ◽  
Author(s):  
Souta Nakajima ◽  
Masanao Sueyoshi ◽  
Shun K. Hirota ◽  
Nobuo Ishiyama ◽  
Ayumi Matsuo ◽  
...  

A key piece of information for ecosystem management is the relationship between the environment and population genetic structure. However, it is difficult to clearly quantify the effects of environmental factors on genetic differentiation because of spatial autocorrelation and analytical problems. In this study, we focused on stream ecosystems and the environmental heterogeneity caused by groundwater and constructed a sampling design in which geographic distance and environmental differences are not correlated. Using multiplexed ISSR genotyping by sequencing (MIG-seq) method, a fine-scale population genetics study was conducted in fluvial sculpin Cottus nozawae, for which summer water temperature is the determinant factor in distribution and survival. There was a clear genetic structure in the watershed. Although a significant isolation-by-distance pattern was detected in the watershed, there was no association between genetic differentiation and water temperature. Instead, asymmetric gene flow from relatively low-temperature streams to high-temperature streams was detected, indicating the importance of low-temperature streams and continuous habitats. The groundwater-focused sampling strategy yielded unexpected results and provided important insights for conservation.


2021 ◽  
Vol 664 ◽  
pp. 103-116
Author(s):  
L Martínez-García ◽  
B Hansson ◽  
J Hollander

Seagrass meadows are one of the most important habitats in coastal regions since they constitute a multifunctional ecosystem providing high productivity and biodiversity. They play a key role in carbon sequestration capacity, mitigation against coastal erosion and as nursery grounds for many marine fish and invertebrates. However, despite these ecosystem functions and services, seagrass meadows are a threatened ecosystem worldwide. In the Baltic Sea, seagrass meadows have declined rapidly, mainly because of eutrophication, anthropogenic activities and climate change. This decline has the potential to erode the genetic variation and genetic structure of the species. In this study, we assessed how genetic variation and genetic differentiation vary among Zostera marina meadows and with a number of environmental characteristics in the county of Scania in southern Sweden. A total of 205 individuals sampled at 12 locations were analysed with 10 polymorphic microsatellite loci. Results showed that in spite of anthropogenic impacts and climate change pressures, locations of Z. marina possessed high genetic variation and weak genetic differentiation, with 3 major genetic clusters. Long-distance dispersal and/or stepping-stone dispersal was found among locations, with higher migration rates within the west coast. Organic matter, salinity and maximum depth appeared to be factors most strongly associated with the genetic structure and morphological variation of Z. marina. These findings contribute significantly in the identification of potential donor sites and the viability of impacted areas to recover from natural recruitment, for the development of effective transplantation measures of Z. marina in the southern Baltic Sea and temperate regions elsewhere.


2021 ◽  
Author(s):  
Yuan Li ◽  
Fangrui Lou ◽  
Hai Li ◽  
Rui Wang ◽  
Zizi Cai ◽  
...  

Abstract Background: Factors such as climate change (especially ocean warming) and overfishing have led to a decline in the supply of Pampus echinogaster and a trend of decreasing age. Exploring the genetic structure and local adaptive evolutionary mechanisms is crucial for the management of P. echinogaster. Results: This population genomic study of nine geographical populations of P. echinogaster in China was conducted by specific-locus amplified fragment sequencing (SLAF-seq). A total of 935,215 SLAF tags were obtained, and the average sequencing depth of the SLAF tags was 20.80×. After filtering, a total of 46,187 high-consistency genome-wide single nucleotide polymorphisms (SNPs) were detected. Based on all SNPs, the overall genetic diversity among the nine P. echinogaster populations was high. The Shantou population had the lowest genetic diversity, and the Tianjin population had the highest. Meanwhile, the population genetic structure based on all SNPs revealed significant gene exchange and insignificant genetic differentiation between the nine P. echinogaster populations. Based on pairwise genetic differentiation (FST), we further screened 1,852 outlier SNPs that might have been affected by habitat selection and annotated SLAF tags containing these 1,852 outlier SNPs using Blast2GO. The annotation results showed that the genomic sequences at the outlier SNPs were mainly related to material metabolism, ion transport, breeding, stress response, and inflammatory reactions, which may be related to the adaptation of P. echinogaster to different environmental conditions (such as water temperature and salinity) in different sea areas.Conclusions: The high genetic similarity of nine P. echinogaster populations may have been caused by the population expansion after the last glacial period, the lack of balance between migration and genetic drift, and the long-distance diffusion of eggs and larvae. We suspected that variation of these genes associated with material metabolism, ion transfer, breeding, stress reactions, and inflammatory reactions were critical for adaptation to spatially heterogeneous temperatures in natural P. echinogaster populations.


2000 ◽  
Vol 23 (3) ◽  
pp. 639-648 ◽  
Author(s):  
Cecilia Bessega ◽  
Beatriz O. Saidman ◽  
Juan C. Vilardi

Allozyme and random amplified polymorphic DNA (RAPD) techniques have been compared for their usefulness for genetic and taxonomic studies in Prosopis glandulosa and P. velutina populations. Isozymes and RAPDs yielded similarly high estimates of genetic variability. Genetic structure and differentiation were analyzed through non-hierarchical Wright's F DT. For all populations considered, both markers produced low gene flow (Nm < 1) estimates. When only P. glandulosa populations were analyzed, isozyme data yielded higher gene flow estimates (Nm > 1), in agreement with that expected for conspecific populations. However, in RAPD data the expected reduction in F DT and the increase in Nm were not observed. Correlation between F DT and geographical distance matrices (Mantel test) for all populations was significant (P = 0.02) when based on isozymes, but not so (P = 0.33) when based on RAPDs. No significant associations among genetic and geographical or climatic variables were observed. Two isoenzyme systems (GOT and PRX) enabled us to distinguish between P. glandulosa and P. velutina, but no diagnostic band for recognition of populations or species studied here were detected by RAPD. However, RAPD markers showed higher values for genetic differentiation among conspecific populations of P. glandulosa and a lower coefficient of variation than those obtained from isozymes.


Sign in / Sign up

Export Citation Format

Share Document