scholarly journals Restricted Spread of Tomato spotted wilt virus in Thrips-Resistant Pepper

2003 ◽  
Vol 93 (10) ◽  
pp. 1223-1227 ◽  
Author(s):  
P. C. Maris ◽  
N. N. Joosten ◽  
R. W. Goldbach ◽  
D. Peters

Spread of Tomato spotted wilt virus (TSWV) and population development of its vector Frankliniella occidentalis were studied on the pepper accessions CPRO-1 and Pikante Reuzen, which are resistant and susceptible to thrips, respectively. Viruliferous thrips were released on plants of each accession (nonchoice tests) or on plants in a 1:1 mixture of both accessions (choice tests) in small cages containing 8 or 16 plants. Significantly fewer CPRO-1 plants became infected in the primary infection phase in both tests. In the nonchoice test, virus infection of the resistant plants did not increase after the initial infection, but all plants eventually became infected when mixtures of both cultivars were challenged in the secondary infection phase. Secondary spread of TSWV from an infected resistant or susceptible source plant was significantly slower to resistant plants than to susceptible plants, independent of source plant phenotype. The restricted introduction and spread of TSWV in the thrips-resistant cultivar was confirmed in a large-scale greenhouse experiment. The restricted and delayed TSWV spread to plants of the resistant accession in both the cage and the greenhouse experiment was explained by impeded thrips population development. The results obtained indicate that thrips resistance may provide a significant protection to TSWV infection, even when the crop is fully susceptible to the virus.

1991 ◽  
Vol 40 (3) ◽  
pp. 347-351 ◽  
Author(s):  
G. MARCHOUX ◽  
K. GÉBRÉ-SELASSIE ◽  
M. VILLEVIEILLE

Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 847-852 ◽  
Author(s):  
D. G. Riley ◽  
H. R. Pappu

Two studies were conducted in Georgia during the spring of 1997 and 1998 to evaluate various management practices for reducing thrips and thrips-vectored Tomato spotted wilt virus (TSWV) in tomato. Populations of the two species of thrips responsible for transmitting TSWV in tomato fields, Frankliniella occidentalis and F. fusca, were determined using blossom and sticky trap samples. Management practices evaluated were host plant resistance, insecticide treatments, planting date, and light-reflective mulch. In both years, intensive insecticide treatment had the largest effect in reducing thrips and spotted wilt and increasing marketable yield, compared with host plant resistance and reflective mulch. The effect of planting date was consistent in that the later planting date resulted in higher incidence of TSWV, lower thrips numbers, and lower tomato yields, both in fruit quality and dollar value. Host plant resistance and reflective mulch significantly reduced thrips and TSWV. In both years, early planting on black plastic with an intensive insecticide treatment resulted in the highest yield.


2017 ◽  
Vol 67 ◽  
pp. 1-7 ◽  
Author(s):  
Pamella Akoth Ogada ◽  
Leonard Muriithi Kiirika ◽  
Christin Lorenz ◽  
Jennifer Senkler ◽  
Hans-Peter Braun ◽  
...  

Author(s):  
Casey L. Ruark-Seward ◽  
Brian Bonville ◽  
George Kennedy ◽  
David A. Rasmussen

AbstractTomato spotted wilt virus (TSWV) is a generalist pathogen with one of the broadest known host ranges among RNA viruses. To understand how TSWV adapts to different hosts, we experimentally passaged viral populations between two alternate hosts, Emilia sochifolia and Datura stramonium, and an obligate vector in which it also replicates, western flower thrips (Frankliniella occidentalis). Deep sequencing viral populations at multiple time points allowed us to track the evolutionary dynamics of viral populations within and between hosts. High levels of viral genetic diversity were maintained in both plants and thrips between transmission events. Rapid fluctuations in the frequency of amino acid variants indicated strong host-specific selection pressures on proteins involved in viral movement (NSm) and replication (RdRp). While several genetic variants showed opposing fitness effects in different hosts, fitness effects were generally positively correlated between hosts indicating that positive rather than antagonistic pleiotropy is pervasive. These results suggest that high levels of genetic diversity together with the positive pleiotropic effects of mutations have allowed TSWV to rapidly adapt to new hosts and expand its host range.


2012 ◽  
Vol 65 ◽  
pp. 120-125 ◽  
Author(s):  
M.M. Davidson ◽  
S.M. Skill ◽  
R.C. Butler ◽  
M-C. Nielsen ◽  
S. Keenan ◽  
...  

The impact of tospovirus infection on the behaviour of western flower thrips (Frankliniella occidentalis) was evaluated in a Ytube olfactometer The response of female western flower thrips with or without a tospovirus (Tomato spotted wilt virus TSWV) to a thrips lure (methyl isonicotinate MI) and chrysanthemum buds was recorded Compared to the blank arm significantly more thrips chose the odourladen arm of the Ytube when it contained MI (65 P016) increase the percentage of thrips that chose the odourladen arm over and above the cleanair arm but thrips (virusfree and infected) moved more quickly to the end of either arm when a bud was present The virus status of thrips was confirmed with RTPCR The presence of the virus in the vector did not substantially affect the behavioural response of the vector to a lure or hostplant material (P>04)


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 524-524 ◽  
Author(s):  
C. Nischwitz ◽  
S. W. Mullis ◽  
R. D. Gitaitis ◽  
A. S. Csinos

Tomato spotted wilt virus (TSWV) is a member of the family Bunyaviridae and has a wide host range including important crops such as tomato, pepper, tobacco, peanut, and onion. In areas of Georgia, soybean (Glycine max) is double cropped between two onion crops and as a rotation crop with peanuts. Soybeans do not show any TSWV symptoms, and therefore, have not been tested on a large scale for the virus. However, because symptomless weed and crop plants provide a reservoir for TSWV and the thrips vectors (2), a survey was conducted during the summer of 2005 to evaluate the occurrence of TSWV in soybean. The survey took place in seven counties in southern Georgia with field sizes ranging between 0.4 and 20 ha (1 and 50 acres). Soybean cultivars included Haskell, DP7220, DP6770, Pioneer 97B52, and Vigoro V622NRR. Of 848 randomly selected plants tested using the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) (Agdia, Inc., Elkhart, IN), 6.6% tested positive for TSWV. Plants testing positive ranged from seedling to the pod-setting stages. Leaves and roots of several plants tested positive, indicating a systemic infection. Soybean plants testing positive using ELISA were blotted onto FTA cards (Whatman Inc., Brentford, UK) to bind viral RNA for preservation, and the blotted samples were processed according to the manufacturer's protocol. Reverse transcription-polymerase chain reaction using punch-outs from the FTA cards and TSWV nucleocapsid gene specific forward and reverse primers (5′-TTAAGCAAGTTCTGTGAG-3′ and 5′-ATGTCTAAGGTTAAGCTC-3′), respectively (4), confirmed the identity of TSWV. TSWV has been found in soybean in other parts of the world (1) but has only been reported in the United States in a survey from Tennessee (3). To our knowledge, this is the first report of the occurrence of TSWV in soybean in Georgia. The role soybean plays as a reservoir or green bridge for thrips and TSWV is currently unknown. References: (1) A. R. Golnaraghi et al. Plant Dis. 88:1069, 2004. (2) R. L. Groves et al. Phytopathology 91:891, 2001. (3) B. S. Kennedy and B. B. Reddick. Soybean Genet. Newsl. 22:197, 1995. (4) H. R. Pappu et al. Tob. Sci. 40:74, 1996.


Sign in / Sign up

Export Citation Format

Share Document