scholarly journals Control of Fusarium Wilt of Radish by Combining Pseudomonas putida Strains that have Different Disease-Suppressive Mechanisms

2003 ◽  
Vol 93 (5) ◽  
pp. 626-632 ◽  
Author(s):  
Marjan de Boer ◽  
Peter Bom ◽  
Frodo Kindt ◽  
Joost J. B. Keurentjes ◽  
Ientse van der Sluis ◽  
...  

Biological control of soilborne plant pathogens in the field has given variable results. By combining specific strains of microorganisms, multiple traits antagonizing the pathogen can be combined and this may result in a higher level of protection. Pseudomonas putida WCS358 suppresses Fusarium wilt of radish by effectively competing for iron through the production of its pseudobactin siderophore. However, in some bioassays pseudobactin-negative mutants of WCS358 also suppressed disease to the same extent as WCS358, suggesting that an, as yet unknown, additional mechanism may be operative in this strain. P. putida strain RE8 induced systemic resistance against fusarium wilt. When WCS358 and RE8 were mixed through soil together, disease suppression was significantly enhanced to approximately 50% as compared to the 30% reduction for the single strain treatments. Moreover, when one strain failed to suppress disease in the single application, the combination still resulted in disease control. The enhanced disease suppression by the combination of P. putida strains WCS358 and RE8 is most likely the result of the combination of their different disease-suppressive mechanisms. These results demonstrate that combining biocontrol strains can lead to more effective, or at least, more reliable biocontrol of fusarium wilt of radish.

2008 ◽  
Vol 98 (7) ◽  
pp. 830-836 ◽  
Author(s):  
Yi-Hung Liu ◽  
Chien-Jui Huang ◽  
Chao-Ying Chen

Lily leaf blight, caused by Botrytis elliptica, is an important fungal disease in Taiwan. In order to identify an effective, nonfungicide method to decrease disease incidence in Lilium formosanum, the efficacy of rhizobacteria eliciting induced systemic resistance (ISR) was examined in this study. Over 300 rhizobacteria were isolated from the rhizosphere of L. formosanum healthy plants and 63 were identified by the analysis of fatty acid profiles. Disease suppressive ability of 13 strains was demonstrated by soil drench application of bacterial suspensions to the rhizosphere of L. formosanum seedlings. Biocontrol experiments were carried out with Bacillus cereus and Pseudomonas putida strains on L. formosanum and Lilium Oriental hybrid cvs. Acapulco and Star Gazer in greenhouse and field studies. Plants treated with B. cereus strain C1L showed that protection against B. elliptica on L. formosanum could last for at least 10 days and was consistent with high populations of B. cereus on lily roots. Analysis of the expression of LfGRP1 and LsGRP1, encoding glycine-rich protein associated with L. formosanum and cv. Star Gazer, respectively, revealed different responses induced by B. cereus or by the pathogen B. elliptica, suggesting that plant defense responses elicited by each follows a different signaling pathway. According to the results of biocontrol assays and LfGRP1/LsGRP1 gene expression analyses with culture filtrates of B. cereus strain C1L, we propose that eliciting factors of ISR are generated by B. cereus and some of them exhibit thermostable and heat-tolerant traits. This is the first report about ISR-eliciting rhizobacteria and factors effective for foliar disease suppression in lily.


2020 ◽  
Vol 8 (7) ◽  
pp. 1037 ◽  
Author(s):  
Dragana Miljaković ◽  
Jelena Marinković ◽  
Svetlana Balešević-Tubić

Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.


2009 ◽  
Vol 2 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Miguel A. Matilla ◽  
Juan L. Ramos ◽  
Peter A.H.M. Bakker ◽  
Rogier Doornbos ◽  
Dayakar V. Badri ◽  
...  

2001 ◽  
Vol 91 (6) ◽  
pp. 593-598 ◽  
Author(s):  
C. M. Press ◽  
J. E. Loper ◽  
J. W. Kloepper

Seed treatment with the rhizosphere bacterium Serratia marcescens strain 90-166 suppressed anthracnose of cucumber, caused by Colleto-trichum orbiculare, through induced systemic resistance (ISR). When the iron concentration of a planting mix was decreased by addition of an iron chelator, suppression of cucumber anthracnose by strain 90-166 was significantly improved. Strain 90-166 produced 465 ± 70 mg/liter of catechol siderophore, as determined by the Rioux assay in deferrated King's medium B. The hypothesis that a catechol siderophore produced by strain 90-166 may be responsible for induction of systemic resistance by this strain was tested by evaluating disease suppression by a mini-Tn5-phoA mutant deficient in siderophore production. Sequence analysis of genomic DNA flanking the mini-Tn5-phoA insertion identified the target gene as entA, which encodes an enzyme in the catechol siderophore biosynthetic pathways of several bacteria. Severity of anthracnose of cucumbers treated with the entA mutant was not significantly different (P = 0.05) from the control, whereas plants treated with wild-type 90-166 had significantly less disease (P = 0.05) than the control. Total (internal and external) population sizes of 90-166 and the entA mutant on roots did not differ significantly (P = 0.05) at any sample time, whereas internal population sizes of the entA mutant were significantly lower (P = 0.05) than those of the wild-type strain at two sampling times. These data suggest that catechol siderophore biosynthesis genes in Serratia marcescens 90-166 are associated with ISR but that this role may be indirect via a reduction in internal root populations.


2005 ◽  
Vol 18 (6) ◽  
pp. 562-569 ◽  
Author(s):  
Marc Ongena ◽  
Emmanuel Jourdan ◽  
Mathias Schäfer ◽  
Cécile Kech ◽  
Herbert Budzikiewicz ◽  
...  

Root treatment of Phaseolus vulgaris with the nonpathogenic Pseudomonas putida BTP1 led to significant reduction of the disease caused by the pathogen Botrytis cinerea on leaves. The molecular determinant of P. putida BTP1 mainly responsible for the induced systemic resistance (ISR) was isolated from cell-free culture fluid after growth of the strain in the iron-poor casamino acid medium. Mass spectrometry analyses performed on both the bacterial product and synthetic analogues revealed a polyalkylated benzylamine structure, with the quaternary ammonium substituted by methyl, ethyl, and C13 aliphatic groups responsible for the relative hydrophobicity of the molecule. The specific involvement of the N-alkylated benzylamine derivative (NABD) in ISR elicitation was first evidenced by testing the purified compound that mimicked the protective effect afforded by crude supernatant samples. The evidence was supported by the loss of elicitor activity of mutants impaired in NABD biosynthesis. Our experiments also showed that other iron-regulated metabolites secreted by the strain are not involved in ISR stimulation. Thus, these results indicate a wider variety of Pseudomonas determinants for ISR than reported to date.


2007 ◽  
Vol 97 (2) ◽  
pp. 239-243 ◽  
Author(s):  
Peter A. H. M. Bakker ◽  
Corné M. J. Pieterse ◽  
L. C. van Loon

Fluorescent Pseudomonas spp. have been studied for decades for their plant growth-promoting effects through effective suppression of soilborne plant diseases. The modes of action that play a role in disease suppression by these bacteria include siderophore-mediated competition for iron, antibiosis, production of lytic enzymes, and induced systemic resistance (ISR). The involvement of ISR is typically studied in systems in which the Pseudomonas bacteria and the pathogen are inoculated and remain spatially separated on the plant, e.g., the bacteria on the root and the pathogen on the leaf, or by use of split root systems. Since no direct interactions are possible between the two populations, suppression of disease development has to be plant-mediated. In this review, bacterial traits involved in Pseudomonas-mediated ISR will be discussed.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1137
Author(s):  
Ronaldo J. D. Dalio ◽  
Heros J. Maximo ◽  
Rafaela Roma-Almeida ◽  
Janaína N. Barretta ◽  
Eric M. José ◽  
...  

The essential tea tree oil (TTO) derived from Melaleuca alternifolia plant is widely used as a biopesticide to protect crops from several plant-pathogens. Its activity raised queries regarding its ability to, not only act as a bio-fungicide or bio-bactericide, but also systemically inducing resistance in plants. This was examined by TTO application to banana plants challenged by Fusarium oxysporum f. sp. cubense (Foc, Race 1) causing Fusarium wilt and to tomato plants challenged by Xanthomonas campestris. Parameters to assess resistance induction included: disease development, enzymatic activity, defense genes expression correlated to systemic acquired resistance (SAR) and induced systemic resistance (ISR) and priming effect. Spraying TTO on field-grown banana plants infected with Foc and greenhouse tomato plants infected with Xanthomonas campestris led to resistance induction in both hosts. Several marker genes of salicylic acid, jasmonic acid and ethylene pathways were significantly up-regulated in parallel with symptoms reduction. For tomato plants, we have also recorded a priming effect following TTO treatment. In addition to fungicidal and bactericidal effect, TTO can be applied in more sustainable strategies to control diseases by enhancing the plants ability to defend themselves against pathogens and ultimately diminish chemical pesticides applications.


Sign in / Sign up

Export Citation Format

Share Document