scholarly journals Evidence of Induced Systemic Resistance Against Botrytis elliptica in Lily

2008 ◽  
Vol 98 (7) ◽  
pp. 830-836 ◽  
Author(s):  
Yi-Hung Liu ◽  
Chien-Jui Huang ◽  
Chao-Ying Chen

Lily leaf blight, caused by Botrytis elliptica, is an important fungal disease in Taiwan. In order to identify an effective, nonfungicide method to decrease disease incidence in Lilium formosanum, the efficacy of rhizobacteria eliciting induced systemic resistance (ISR) was examined in this study. Over 300 rhizobacteria were isolated from the rhizosphere of L. formosanum healthy plants and 63 were identified by the analysis of fatty acid profiles. Disease suppressive ability of 13 strains was demonstrated by soil drench application of bacterial suspensions to the rhizosphere of L. formosanum seedlings. Biocontrol experiments were carried out with Bacillus cereus and Pseudomonas putida strains on L. formosanum and Lilium Oriental hybrid cvs. Acapulco and Star Gazer in greenhouse and field studies. Plants treated with B. cereus strain C1L showed that protection against B. elliptica on L. formosanum could last for at least 10 days and was consistent with high populations of B. cereus on lily roots. Analysis of the expression of LfGRP1 and LsGRP1, encoding glycine-rich protein associated with L. formosanum and cv. Star Gazer, respectively, revealed different responses induced by B. cereus or by the pathogen B. elliptica, suggesting that plant defense responses elicited by each follows a different signaling pathway. According to the results of biocontrol assays and LfGRP1/LsGRP1 gene expression analyses with culture filtrates of B. cereus strain C1L, we propose that eliciting factors of ISR are generated by B. cereus and some of them exhibit thermostable and heat-tolerant traits. This is the first report about ISR-eliciting rhizobacteria and factors effective for foliar disease suppression in lily.

2009 ◽  
Vol 35 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Flávia Tavares Colpas ◽  
Kátia Regina Freitas Schwan-Estrada ◽  
José Renato Stangarlin ◽  
Maria De Lurdes Ferrarese ◽  
Carlos Alberto Scapim ◽  
...  

Aqueous extracts of the leaves of Ocimum gratissimum at 10, 25, 40 and 50% (w/v) concentrations induced the production of phytoalexins in soybean cotyledons and sorghum mesocotyls. The aqueous extracts also induced systemic resistance in cucumber to Colletotrichum lagenarium, reflected by reduction in disease incidence and an increase in chitinase production. Modes of action and the existence of possible elicitors of defense response in O. gratissimum leaf extracts are discussed.


2003 ◽  
Vol 93 (5) ◽  
pp. 626-632 ◽  
Author(s):  
Marjan de Boer ◽  
Peter Bom ◽  
Frodo Kindt ◽  
Joost J. B. Keurentjes ◽  
Ientse van der Sluis ◽  
...  

Biological control of soilborne plant pathogens in the field has given variable results. By combining specific strains of microorganisms, multiple traits antagonizing the pathogen can be combined and this may result in a higher level of protection. Pseudomonas putida WCS358 suppresses Fusarium wilt of radish by effectively competing for iron through the production of its pseudobactin siderophore. However, in some bioassays pseudobactin-negative mutants of WCS358 also suppressed disease to the same extent as WCS358, suggesting that an, as yet unknown, additional mechanism may be operative in this strain. P. putida strain RE8 induced systemic resistance against fusarium wilt. When WCS358 and RE8 were mixed through soil together, disease suppression was significantly enhanced to approximately 50% as compared to the 30% reduction for the single strain treatments. Moreover, when one strain failed to suppress disease in the single application, the combination still resulted in disease control. The enhanced disease suppression by the combination of P. putida strains WCS358 and RE8 is most likely the result of the combination of their different disease-suppressive mechanisms. These results demonstrate that combining biocontrol strains can lead to more effective, or at least, more reliable biocontrol of fusarium wilt of radish.


2001 ◽  
Vol 91 (6) ◽  
pp. 593-598 ◽  
Author(s):  
C. M. Press ◽  
J. E. Loper ◽  
J. W. Kloepper

Seed treatment with the rhizosphere bacterium Serratia marcescens strain 90-166 suppressed anthracnose of cucumber, caused by Colleto-trichum orbiculare, through induced systemic resistance (ISR). When the iron concentration of a planting mix was decreased by addition of an iron chelator, suppression of cucumber anthracnose by strain 90-166 was significantly improved. Strain 90-166 produced 465 ± 70 mg/liter of catechol siderophore, as determined by the Rioux assay in deferrated King's medium B. The hypothesis that a catechol siderophore produced by strain 90-166 may be responsible for induction of systemic resistance by this strain was tested by evaluating disease suppression by a mini-Tn5-phoA mutant deficient in siderophore production. Sequence analysis of genomic DNA flanking the mini-Tn5-phoA insertion identified the target gene as entA, which encodes an enzyme in the catechol siderophore biosynthetic pathways of several bacteria. Severity of anthracnose of cucumbers treated with the entA mutant was not significantly different (P = 0.05) from the control, whereas plants treated with wild-type 90-166 had significantly less disease (P = 0.05) than the control. Total (internal and external) population sizes of 90-166 and the entA mutant on roots did not differ significantly (P = 0.05) at any sample time, whereas internal population sizes of the entA mutant were significantly lower (P = 0.05) than those of the wild-type strain at two sampling times. These data suggest that catechol siderophore biosynthesis genes in Serratia marcescens 90-166 are associated with ISR but that this role may be indirect via a reduction in internal root populations.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 59
Author(s):  
Pushp Sheel Shukla ◽  
Tudor Borza ◽  
Alan T. Critchley ◽  
Balakrishnan Prithiviraj

Sustainable agricultural practices increasingly demand novel, environmentally friendly compounds which induce plant immunity against pathogens. Stimulating plant immunity using seaweed extracts is a highly viable strategy, as these formulations contain many bio-elicitors (phyco-elicitors) which can significantly boost natural plant immunity. Certain bioactive elicitors present in a multitude of extracts of seaweeds (both commercially available and bench-scale laboratory formulations) activate pathogen-associated molecular patterns (PAMPs) due to their structural similarity (i.e., analogous structure) with pathogen-derived molecules. This is achieved via the priming and/or elicitation of the defense responses of the induced systemic resistance (ISR) and systemic acquired resistance (SAR) pathways. Knowledge accumulated over the past few decades is reviewed here, aiming to explain why certain seaweed-derived bioactives have such tremendous potential to elicit plant defense responses with considerable economic significance, particularly with increasing biotic stress impacts due to climate change and the concomitant move to sustainable agriculture and away from synthetic chemistry and environmental damage. Various extracts of seaweeds display remarkably different modes of action(s) which can manipulate the plant defense responses when applied. This review focuses on both the similarities and differences amongst the modes of actions of several different seaweed extracts, as well as their individual components. Novel biotechnological approaches for the development of new commercial products for crop protection, in a sustainable manner, are also suggested.


2020 ◽  
Vol 33 (12) ◽  
pp. 1424-1437
Author(s):  
Chuanhong Bian ◽  
Yabing Duan ◽  
Jueyu Wang ◽  
Qian Xiu ◽  
Jianxin Wang ◽  
...  

Validamycin A (VMA) is an aminoglycoside antibiotic used to control rice sheath blight. Although it has been reported that VMA can induce the plant defense responses, the mechanism remains poorly understood. Here, we found that reactive oxygen species (ROS) bursts and callose deposition in Arabidopsis thaliana, rice (Oryza sativa L.), and wheat (Triticum aestivum L.) were induced by VMA and were most intense with 10 μg of VMA per milliliter at 24 h. Moreover, we showed that VMA induced resistance against Pseudomonas syringae, Botrytis cinerea, and Fusarium graminearum in Arabidopsis leaves, indicating that VMA induces broad-spectrum disease resistance in both dicots and monocots. In addition, VMA-mediated resistance against P. syringae was not induced in NahG transgenic plants, was partially decreased in npr1 mutants, and VMA-mediated resistance to B. cinerea was not induced in npr1, jar1, and ein2 mutants. These results strongly indicated that VMA triggers plant defense responses to both biotrophic and necrotrophic pathogens involved in salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) signaling pathways and is dependent on NPR1. In addition, transcriptome analysis further revealed that VMA regulated the expression of genes involved in SA, JA/ET, abscisic acid (ABA), and auxin signal pathways. Taken together, VMA induces systemic resistance involving in SA and JA/ET signaling pathways and also exerts a positive influence on ABA and auxin signaling pathways. Our study highlights the creative application of VMA in triggering plant defense responses against plant pathogens, providing a valuable insight into applying VMA to enhance plant resistance and reduce the use of chemical pesticides. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 745-750 ◽  
Author(s):  
J. H. Graham ◽  
R. P. Leite

Induced systemic resistance compounds (ISRs), acibenzolar-S-methyl (Actigard), and harpin protein (Messenger) were assayed in the greenhouse against Xanthomonas axonopodis pv. citrumelo, the cause of citrus bacterial spot (CBS), and X. axonopodis pv. citri, the cause of Asiatic citrus canker. Actigard and Messenger applied as foliar sprays 3 to 7 days before inoculation reduced numbers of lesions when either bacterium at 103 or 104 CFU/ml was injection-infiltrated into Swingle citrumelo leaves. Based on this activity, the ISRs were evaluated in southern Brazil in orchards of sweet oranges with low to moderate canker disease incidence in spray programs with and without copper oxychloride (COC) and copper hydroxide (CuOH). Actigard and Messenger were applied full season or in the first two or three sprays of a six-spray program in an attempt to reduce early canker disease on foliage and thereby reduce subsequent fruit infection and premature drop. Sprays of COC and CuOH were moderately to highly effective in reducing canker disease incidence and preventing premature fruit drop. Actigard or Messenger in combination with COC and CuOH, respectively, did not significantly reduce citrus canker incidence on foliage or fruit drop compared with Cu alone. The lack of additional control with ISRs means they cannot be recommended at this time to augment Cu programs for management of citrus canker.


1999 ◽  
Vol 65 (3) ◽  
pp. 1061-1070 ◽  
Author(s):  
I. Yedidia ◽  
N. Benhamou ◽  
I. Chet

ABSTRACT The potential of the biocontrol agent Trichoderma harzianum T-203 to trigger plant defense responses was investigated by inoculating roots of cucumber seedlings withTrichoderma in an aseptic, hydroponic system.Trichoderma-treated plants were more developed than nontreated plants throughout the experiment. Electron microscopy of ultrathin sections from Trichoderma-treated roots revealed penetration of Trichoderma into the roots, restricted mainly to the epidermis and outer cortex. Strengthening of the epidermal and cortical cell walls was observed, as was the deposition of newly formed barriers. These typical host reactions were found beyond the sites of potential fungal penetration. Wall appositions contained large amounts of callose and infiltrations of cellulose. The wall-bound chitin in Trichoderma hyphae was preserved, even when the hyphae had undergone substantial disorganization. Biochemical analyses revealed that inoculation with Trichodermainitiated increased peroxidase and chitinase activities within 48 and 72 h, respectively. These results were observed for both the roots and the leaves of treated seedlings, providing evidence that T. harzianum may induce systemic resistance mechanisms in cucumber plants.


2009 ◽  
Vol 75 (16) ◽  
pp. 5373-5379 ◽  
Author(s):  
Yariv Brotman ◽  
Arik Makovitzki ◽  
Yechiel Shai ◽  
Ilan Chet ◽  
Ada Viterbo

ABSTRACT A new family of synthetic, membrane-active, ultrashort lipopeptides composed of only four amino acids linked to fatty acids was tested for the ability to induce systemic resistance and defense responses in plants. We found that two peptides wherein the third residue is a d-enantiomer (italic), C16-KKKK and C16-KLLK, can induce medium alkalinization of tobacco suspension-cultured cells and expression of defense-related genes in cucumber and Arabidopsis seedlings. Moreover, these compounds can prime systemic induction of antimicrobial compounds in cucumber leaves similarly to the plant-beneficial fungus Trichoderma asperellum T203 and provide systemic protection against the phytopathogens Botrytis cinerea B05, Pseudomonas syringae pv. lachrimans, and P. syringae pv. tomato DC3000. Thus, short cationic lipopeptides are a new category of compounds with potentially high utility in the induction of systemic resistance in plants.


Sign in / Sign up

Export Citation Format

Share Document