scholarly journals Body Mass‐Specific Na, K‐ATPase Activity in the Medullary Thick Ascending Limb – Implications for Species‐Dependent Urine Concentrating Mechanisms

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Mun Aw ◽  
Tamara M. Armstrong ◽  
Michele Nawata ◽  
Sarah N. Bodine ◽  
Jeeeun J. Oh ◽  
...  
2018 ◽  
Vol 314 (4) ◽  
pp. R563-R573 ◽  
Author(s):  
Mun Aw ◽  
Tamara M. Armstrong ◽  
C. Michele Nawata ◽  
Sarah N. Bodine ◽  
Jeeeun J. Oh ◽  
...  

In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.


1985 ◽  
Vol 248 (4) ◽  
pp. F487-F491
Author(s):  
L. C. Garg ◽  
N. Narang ◽  
C. S. Wingo

We determined the effect of dexamethasone on Na-K-ATPase activity in six nephron segments of the adrenalectomized rabbit. Treatment consisted of 1.4 micrograms dexamethasone X 100 g body wt-1 X day-1 for 7 days prior to the study of the nephron segments. Enzyme activity was determined in individual nephron segments by a microfluorometric assay. There was 40-50% less activity of Na-K-ATPase in the S1 portion of the proximal convoluted tubule (PCT, S1), the medullary thick ascending limb (MTAL), and the distal convoluted tubule (DCT) of adrenalectomized rabbits compared with that of control (sham-operated) animals. There was no significant difference in the enzyme activity in proximal straight tubules (PST, S2 and S3) and cortical thick ascending limb (CTAL) of adrenalectomized and control animals. Dexamethasone treatment produced a dexamethasone concentration of 5 +/- 0.8 nM in the plasma and increased Na-K-ATPase activity in PCT (S1), MTAL, and DCT of the adrenalectomized animals to the control levels without significantly affecting the enzyme activity in the PST (S2, S3) or CTAL. The concentration of dexamethasone in the plasma was such that the hormone should bind mainly to dexamethasone receptors (Kd = 5 nM) and very little to aldosterone receptors (Kd greater than 60 nM). Thus, glucocorticoids probably stimulate Na-K-ATPase in PCT, MTAL, and DCT through glucocorticoid (Type II) receptors and not through mineralocorticoid (Type I) receptors.


1987 ◽  
Vol 252 (5) ◽  
pp. F838-F843 ◽  
Author(s):  
M. E. Chamberlin ◽  
L. J. Mandel

Na+-K+-ATPase activity was measured in a suspension of rabbit medullary thick ascending limb tubules under oxygenated and anoxic conditions. Oxygenated, K-depleted tubules rapidly take up added extracellular potassium accompanied by a simultaneous increase in oxygen consumption. The ATP/O2 ratio was 12.5 +/- 0.7, suggesting a tight coupling between oxidative metabolism (6 ATP/O2) and Na+-K+-ATPase activity (2 K/ATP). On reaching anoxia, the tubules released potassium into the medium, but this rate was accelerated by the addition of ouabain, which indicated that the Na+-K+-ATPase was still operative in anoxia. Because 10 min of anoxia led to only a 15.7% decline in potassium content, a new steady state of potassium uptake and leakage must be reached during anoxia. Anaerobic metabolism maintained 73% of cellular ATP during 10 min of anoxia. Exposure of anoxic tubules to iodoacetate produced a 57% decline in ATP levels and a 33% decline in potassium content, which indicated that glycolysis is an important pathway in supplying energy during anaerobiosis.


1990 ◽  
Vol 127 (3) ◽  
pp. 377-382 ◽  
Author(s):  
J. A. Charlton ◽  
P. H. Baylis

ABSTRACT Previous studies have indicated that ornithine decarboxylase (ODC) may be involved in the stimulation of Na+/K+-ATPase activity by arginine vasopressin (AVP) in the rat renal medullary thick ascending limb of Henle's loop. The present study was aimed at establishing the role of the polyamines, the conversion products of ODC activity, in the stimulation of Na+/K+-ATPase by AVP. Using cytochemical methods, we have demonstrated an increase in Na+/K+-ATPase activity after stimulation with putrescine, spermidine and spermine (each 1 mmol/l) for 2·5,2 and 1·5 min respectively. The specific inhibitors of spermidine and spermine synthase, bis-cyclohexylammonium sulphate and N-alkylated-1,3-diaminopropane respectively, inhibited the stimulation of Na+/K+-ATPase by AVP, this inhibition being reversed by spermine. These findings suggest that polyamines are involved in the stimulus-response coupling of the hormone-mediated response. Journal of Endocrinology (1990) 127, 377–382


1990 ◽  
Vol 127 (2) ◽  
pp. 213-216 ◽  
Author(s):  
J. A. Charlton ◽  
P. H. Baylis

ABSTRACT In previous studies, we have demonstrated that 1–10 fmol arginine vasopressin (AVP)/l maximally stimulates the activity of the enzyme Na+/K+-ATPase in the rat renal medullary thick ascending limb (MTAL) of Henle's loop after 4 or 10 min of stimulation when measured using a cytochemical bioassay. We have tested the hypothesis that this stimulation is mediated by the V2 receptor in the MTAL. A cytochemical bioassay was used to investigate the effect of specific V1 and V2/V1 antagonists and a synthetic V2 agonist [1-deamino,8-d-arginine]-vasopressin (dDAVP), on the activity of Na+/K+-ATPase. There was no effect of the V1 antagonist (1 fmol-1 μmol/l) in inhibiting the activity of Na+/K+-ATPase stimulated by 1 fmol AVP/l. In contrast, 100 pmol of the V2/V1 antagonist/l significantly (P < 0·001) inhibited the stimulation of Na+/K+-ATPase activity by 1 fmol AVP/l from 55·5±4·3 (s.e.m.) to 31·9±1·6 mean integrated extinction (MIE) after 4 min of stimulation and from 67·0±3·2 to 36·9±0·7 MIE after 10 min of stimulation. Similarly, the stimulation of Na+/K+-ATPase by 10 fmol dDAVP/l was inhibited by the V2/V1 antagonist from 55·1±1·0 to 26·1±0·5 MIE after 4 min of stimulation. We conclude that the stimulation of Na+/K+-ATPase by AVP is mediated by the V2 receptor in the rat renal MTAL. Journal of Endocrinology (1990) 127, 213–216


1992 ◽  
Vol 262 (4) ◽  
pp. F583-F590 ◽  
Author(s):  
C. Khadouri ◽  
S. Marsy ◽  
C. Barlet-Bas ◽  
L. Cheval ◽  
A. Doucet

An N-ethylmaleimide (NEM)-sensitive adenosinetriphosphatase (ATPase) displaying the kinetic and pharmacological properties of an electrogenic proton pump has been described in the different segments of rat nephron, where it mediates part of the active tubular proton secretion. This study was therefore designed to evaluate whether changes in urinary acidification observed during metabolic acidosis or alkalosis were associated with alterations of the activity of tubular NEM-sensitive ATPase, and if so, to localize the nephron segments responsible for these changes. Within 1 wk after the onset of ammonium chloride treatment, rats developed a metabolic acidosis, and NEM-sensitive ATPase activity was markedly increased in the medullary thick ascending limb of Henle's loop and outer medullary collecting tubule, and slightly increased in the cortical collecting tubule. Conversely, treatment with sodium bicarbonate induced a metabolic alkalosis that was accompanied by decreased NEM-sensitive ATPase activity in medullary thick ascending limb and outer medullary collecting tubule. NEM-sensitive ATPase activity was not altered in any other nephron segment tested in alkalotic and acidotic rats, i.e., the proximal tubule and the cortical thick ascending limb of Henle's loop. Changes qualitatively similar were observed as soon as 3 h after the onset of NaHCO3 or NH4Cl-loading. In the medullary collecting tubule, alterations of NEM-sensitive ATPase activity are in part due to hyperaldosteronism observed in both acidotic and alkalotic rats.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 251 (3) ◽  
pp. F506-F512 ◽  
Author(s):  
S. K. Mujais ◽  
N. A. Kurtzman

This study has examined the temporal profile and the segmental localization along the rat nephron of the increase in Na-K-ATPase produced by uninephrectomy, and the role of the adrenal gland in the generation of the increase in enzyme activity. In adrenal-intact rats, an increase in Na-K-ATPase activity in the cortical collecting tubule (CCT) was observed at 1 wk (140 +/- 13% of sham, P less than 0.05) and sustained at 2 wk (140 +/- 8% of sham, P less than 0.05). In contrast, the enhancement of enzyme activity in the proximal convoluted tubule (PCT) was transient (at 1 wk: 164 +/- 20% of sham, P less than 0.05; and at 2 wk: 97 +/- 9% of sham, P greater than 0.5). No changes in Na-K-ATPase activity were observed in the other nephron segments studied: pars recta, medullary thick ascending limb, cortical thick ascending limb, distal convoluted tubule, and medullary collecting tubule. In adrenalectomized rats, CCT enzyme activity was lower than in adrenal-intact rats (761 +/- 84 vs. 1,984 +/- 276 pmol X mm-1 X h-1, P less than 0.001) and was not altered by uninephrectomy (849 +/- 91 pmol X mm-1 X h-1, NS). We conclude that the increase in Na-K-ATPase activity following uninephrectomy is restricted to two segments of the nephron and follows a distinctive pattern in each. In the PCT a transient enhancement in enzyme activity is observed, whereas in the CCT the increase in Na-K-ATPase is sustained and requires the presence of an intact adrenal gland.


Diabetologia ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 124-131 ◽  
Author(s):  
M. Tsimaratos ◽  
F. Roger ◽  
D. Chabardès ◽  
D. Mordasini ◽  
U. Hasler ◽  
...  

2007 ◽  
Vol 293 (4) ◽  
pp. F1413-F1422 ◽  
Author(s):  
Ben Eng ◽  
Somshuvra Mukhopadhyay ◽  
Carlos P. Vio ◽  
Paulina L. Pedraza ◽  
Shoujin Hao ◽  
...  

A medullary thick ascending limb (mTAL) cell line, termed raTAL, has been established from freshly isolated rat mTAL tubules and cultured continuously for up to 75 passages; it retains characteristics of mTAL cells even after retrieval from storage in liquid nitrogen for several months. The cells express Tamm-Horsfall glycoprotein (THP), a TAL-specific marker, grow to confluence, exhibit a polygonal morphology characteristic of epithelial cells, and form “domes.” Detection of THP, Na+-K+-2Cl− cotransporter (NKCC2), Na+-K+-ATPase, and renal outer medullary K+ channel (ROMK) was achieved using indirect immunofluorescence and confocal microscopy. Western blot analysis of NKCC2 expression using two different antibodies revealed a band of ∼160 kDa, and RT-PCR analysis demonstrated the presence of NKCC2 isoforms A and F, which was confirmed by DNA sequencing; transport of Cl− into raTAL cells was inhibited by furosemide. Ouabain- and bumetanide-sensitive oxygen consumption, an index of ion transport activity in the mTAL, was observed in raTAL cells, and the number of domes present was reduced significantly when cells were incubated in the presence of ouabain or bumetanide. The specific activity of Na+-K+-ATPase activity was determined in raTAL cells (0.67 ± 0.18 nmol Pi·μg protein−1·min−1), primary cultures of mTAL cells (0.39 ± 0.08 nmol Pi·μg protein−1·min−1), and freshly isolated mTAL tubules (1.10 ± 0.29 nmol Pi·μg protein−1·min−1), and ∼30–50% of total cellular ATPase activity was inhibited by ouabain, in accord with other mTAL preparations. This cell line will be used in studies that address biochemical, molecular, and physiological mechanisms in the mTAL.


Sign in / Sign up

Export Citation Format

Share Document