scholarly journals 3D Anatomy of the Jaw Muscles of the Spiny‐Tailed Dogfish ( Squalus acanthius )

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
London Bales ◽  
Casey Holliday
Keyword(s):  
Author(s):  
C. S. Potter ◽  
C. D. Gregory ◽  
H. D. Morris ◽  
Z.-P. Liang ◽  
P. C. Lauterbur

Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.


2010 ◽  
Vol 298 (1) ◽  
pp. R34-R42 ◽  
Author(s):  
Takafumi Kato ◽  
Yuji Masuda ◽  
Hayato Kanayama ◽  
Norimasa Nakamura ◽  
Atsushi Yoshida ◽  
...  

Exaggerated jaw motor activities during sleep are associated with muscle symptoms in the jaw-closing rather than the jaw-opening muscles. The intrinsic activity of antagonistic jaw muscles during sleep remains unknown. This study aims to assess the balance of muscle activity between masseter (MA) and digastric (DG) muscles during sleep in guinea pigs. Electroencephalogram (EEG), electroocculogram, and electromyograms (EMGs) of dorsal neck, MA, and DG muscles were recorded with video during sleep-wake cycles. These variables were quantified for each 10-s epoch. The magnitude of muscle activity during sleep in relation to mean EMG activity of total wakefulness was up to three times higher for MA muscle than for DG muscle for nonrapid eye movement (NREM) and rapid-eye-movement (REM) sleep. Although the activity level of the two jaw muscles fluctuated during sleep, the ratio of activity level for each epoch was not proportional. Epochs with a high activity level for each muscle were associated with a decrease in δEEG power and/or an increase in heart rate in NREM sleep. However, this association with heart rate and activity levels was not observed in REM sleep. These results suggest that in guinea pigs, the magnitude of muscle activity for antagonistic jaw muscles is heterogeneously modulated during sleep, characterized by a high activity level in the jaw-closing muscle. Fluctuations in the activity are influenced by transient arousal levels in NREM sleep but, in REM sleep, the distinct controls may contribute to the fluctuation. The above intrinsic characteristics could underlie the exaggeration of jaw motor activities during sleep (e.g., sleep bruxism).


1973 ◽  
Vol 38 (1) ◽  
pp. 99-109 ◽  
Author(s):  
A. Taylor ◽  
F.W.J. Cody ◽  
M.A. Bosley

1999 ◽  
Vol 81 (5) ◽  
pp. 2156-2163 ◽  
Author(s):  
J. Yang ◽  
K. S. Türker

Jaw reflexes evoked by mechanical stimulation of teeth in humans. The reflex response of jaw muscles to mechanical stimulation of an upper incisor tooth was investigated using the surface electromyogram (SEMG) of the masseter muscle and the bite force. With a slowly rising stimulus, the reflex response obtained on the masseter SEMG showed three different patterns of reflex responses; sole excitation, sole inhibition, and inhibition followed by excitation. Simultaneously recorded bite force, however, exhibited mainly one reflex response pattern, a decrease followed by an increase in the net closing force. A rapidly rising stimulus also induced several different patterns of reflex responses in the masseter SEMG. When the simultaneously recorded bite force was analyzed, however, there was only one reflex response pattern, a decrease in the net closing force. Therefore, the reflex change in the masseter muscle is not a good representative of the net reflex response of all jaw muscles to mechanical tooth stimulation. The net response is best expressed by the averaged bite force. The averaged bite force records showed that when the stimulus force was developing rapidly, the periodontal reflex could reduce the bite force and hence protect the teeth and supporting tissues from damaging forces. It also can increase the bite force; this might help keep food between the teeth if the change in force rate is slow, especially when the initial bite force is low.


2005 ◽  
Vol 21 (8) ◽  
pp. 2209-2216 ◽  
Author(s):  
Tim van Wessel ◽  
Geerling E. J. Langenbach ◽  
Leo J. van Ruijven ◽  
Peter Brugman ◽  
Theo M. G. J. van Eijden
Keyword(s):  

2021 ◽  
Vol 15 ◽  
Author(s):  
Emilia Asante ◽  
Devynn Hummel ◽  
Suman Gurung ◽  
Yasmin M. Kassim ◽  
Noor Al-Shakarji ◽  
...  

Precise positioning of neurons resulting from cell division and migration during development is critical for normal brain function. Disruption of neuronal migration can cause a myriad of neurological disorders. To investigate the functional consequences of defective neuronal positioning on circuit function, we studied a zebrafish frizzled3a (fzd3a) loss-of-function mutant off-limits (olt) where the facial branchiomotor (FBM) neurons fail to migrate out of their birthplace. A jaw movement assay, which measures the opening of the zebrafish jaw (gape), showed that the frequency of gape events, but not their amplitude, was decreased in olt mutants. Consistent with this, a larval feeding assay revealed decreased food intake in olt mutants, indicating that the FBM circuit in mutants generates defective functional outputs. We tested various mechanisms that could generate defective functional outputs in mutants. While fzd3a is ubiquitously expressed in neural and non-neural tissues, jaw cartilage and muscle developed normally in olt mutants, and muscle function also appeared to be unaffected. Although FBM neurons were mispositioned in olt mutants, axon pathfinding to jaw muscles was unaffected. Moreover, neuromuscular junctions established by FBM neurons on jaw muscles were similar between wildtype siblings and olt mutants. Interestingly, motor axons innervating the interhyoideus jaw muscle were frequently defasciculated in olt mutants. Furthermore, GCaMP imaging revealed that mutant FBM neurons were less active than their wildtype counterparts. These data show that aberrant positioning of FBM neurons in olt mutants is correlated with subtle defects in fasciculation and neuronal activity, potentially generating defective functional outputs.


Sign in / Sign up

Export Citation Format

Share Document