scholarly journals Defective Neuronal Positioning Correlates With Aberrant Motor Circuit Function in Zebrafish

2021 ◽  
Vol 15 ◽  
Author(s):  
Emilia Asante ◽  
Devynn Hummel ◽  
Suman Gurung ◽  
Yasmin M. Kassim ◽  
Noor Al-Shakarji ◽  
...  

Precise positioning of neurons resulting from cell division and migration during development is critical for normal brain function. Disruption of neuronal migration can cause a myriad of neurological disorders. To investigate the functional consequences of defective neuronal positioning on circuit function, we studied a zebrafish frizzled3a (fzd3a) loss-of-function mutant off-limits (olt) where the facial branchiomotor (FBM) neurons fail to migrate out of their birthplace. A jaw movement assay, which measures the opening of the zebrafish jaw (gape), showed that the frequency of gape events, but not their amplitude, was decreased in olt mutants. Consistent with this, a larval feeding assay revealed decreased food intake in olt mutants, indicating that the FBM circuit in mutants generates defective functional outputs. We tested various mechanisms that could generate defective functional outputs in mutants. While fzd3a is ubiquitously expressed in neural and non-neural tissues, jaw cartilage and muscle developed normally in olt mutants, and muscle function also appeared to be unaffected. Although FBM neurons were mispositioned in olt mutants, axon pathfinding to jaw muscles was unaffected. Moreover, neuromuscular junctions established by FBM neurons on jaw muscles were similar between wildtype siblings and olt mutants. Interestingly, motor axons innervating the interhyoideus jaw muscle were frequently defasciculated in olt mutants. Furthermore, GCaMP imaging revealed that mutant FBM neurons were less active than their wildtype counterparts. These data show that aberrant positioning of FBM neurons in olt mutants is correlated with subtle defects in fasciculation and neuronal activity, potentially generating defective functional outputs.

2015 ◽  
Vol 6 (2) ◽  
pp. 86-89
Author(s):  
Douglas Hammond ◽  
David Davies ◽  
Zhangjie Su

Although the absolute definition is often debated, concussion can be defined as a temporary disruption in normal brain function after a mechanical impact or transmission of force through cerebral tissue. A frequent misconception in the diagnosis is that an individual must have ‘lost consciousness’ to have become concussed; this is not the case. A temporary loss of function may be manifested as blurring of vision, confusion or unsteadiness.


2021 ◽  
Author(s):  
◽  
Asante Emilia Boakyewaa

Development of the vertebrate nervous system involves substantial cell migration, where immature neurons move to specific locations to generate functional circuits. Precise neuronal migration and positioning are essential for proper brain architecture and function. Abnormal neuronal migration can contribute to neurological disorders such as lissencephaly, autism and schizophrenia. However, the consequences of abnormal neuronal migration for circuit organization and functional output are poorly understood. To provide some insight, I used the facial branchiomotor (FBM) neurons in zebrafish as a model system to analyze the effects of aberrant neuronal migration on circuit function. The FBM neurons are a subset of the branchiomotor neurons, which are generated in the vertebrate hindbrain and innervate facial and jaw muscles. During development in zebrafish and mice, FBM neurons migrate caudally from rhombomere 4 (r4) to r6 to form the facial motor nucleus and innervate jaw and gill muscles (in fish). In order to examine the consequences of aberrant neuronal migration, one must first characterize the normal functional output of the FBM circuit that drives jaw movements. In collaboration with colleagues in the MU Department of Computer Science, we developed an automated image analysis system to extract motion features from video recordings of jaw movement, enabling rapid and accurate high-throughput analysis. We used this software to examine the emergence of jaw movement in zebrafish larvae between 3-9 days post fertilization (dpf). While gape, the displacement of the lower jaw to form the mouth opening, was minimal at 3 dpf, gape frequency increased sharply by 5 dpf, and stabilized by 7 dpf. A detailed analysis of branchiomotor axons and neuromuscular junctions (NMJs) on jaw muscles suggest that this "maturation" of branchiomotor circuit output may be driven by changes in presynaptic structures at the jaw NMJs. To evaluate the consequences of defective neuronal migration on circuit output, I examined whether jaw movement was affected in the zebrafish off-limits (olt) mutant in which FBM neurons fail to migrate out of r4. In olt mutants, the increase in gape frequency occurred normally between 3-5 dpf. However, the average gape frequency was [approximately] 50 [percent] lower than wildtype siblings from 5-9 dpf while gape amplitude was unaffected. Given the jaw movement defect in olt mutants, I evaluated food intake, an independent measure of jaw movement and another functional output of the branchiomotor circuit. Olt mutants ate poorly compared to their wildtype siblings, consistent with their reduced jaw movement. I then tested several potential mechanisms that could generate the functional deficits in olt mutants. While fzd3a, the gene inactivated in olt mutants, is ubiquitously expressed in neural and non-neural tissues, jaw cartilage and muscle developed normally in olt mutants, and muscle function also appeared to be unaffected. Although FBM neurons were mispositioned in olt mutants, axon pathfinding to jaw muscles were unaffected. Moreover, neuromuscular junctions established by FBM neurons on jaw muscles were similar between wildtype siblings and olt mutants. Interestingly, FBM axons innervating the interhyoideus jaw muscle were frequently defasciculated in olt mutants. Furthermore, GCaMP imaging revealed that mutant FBM neurons were less active than their wildtype counterparts. These data suggest that aberrant positioning of FBM neurons in olt mutants results in subtle defects in fasciculation and neuronal activity, potentially generating defective functional outputs. In the future, we will examine modulatory inputs from other brain regions to the branchiomotor neurons and examine their roles in impacting circuit output in olt mutants.


2021 ◽  
Author(s):  
Jessica G Cunningham ◽  
James D Scripter ◽  
Stephany A Nti ◽  
Eric S Tucker

Thalamocortical connectivity is essential for normal brain function. This important pathway is established during development, when thalamic axons extend a long distance through the forebrain before reaching the cerebral cortex. In this study, we identify a novel role for the c-Jun N-terminal Kinase (JNK) signaling pathway in guiding thalamocortical axons through intermediate target territories. Complete genetic removal of JNK signaling from the Distal-less 5/6 (Dlx5/6) domain in mice prevents thalamocortical axons from crossing the diencephalon-telencephalon boundary (DTB) and the internal capsule fails to form. Ventral telencephalic cells critical for thalamocortical axon extension including corridor and guidepost neurons are also disrupted. In addition, corticothalamic, striatonigral, and nigrostriatal axons fail to cross the DTB. Analyses of different JNK mutants demonstrates that thalamocortical axon pathfinding has a non-autonomous requirement for JNK signaling. We conclude that JNK signaling within the Dlx5/6 territory enables the construction of major axonal pathways in the developing forebrain.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hannah C. Bennett ◽  
Yongsoo Kim

The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer’s disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community’s current understanding of pericytes’ regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type’s role in the normal brain and pathological conditions.


2020 ◽  
Author(s):  
R. Chittajallu ◽  
K. Auville ◽  
V. Mahadevan ◽  
M. Lai ◽  
S. Hunt ◽  
...  

ABSTRACTThe ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance to human circuit function. In this study, we focus on neurogliaform cells, a specialized form of neuron that possess physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms relevant for human cognitive processing and behavior.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ramesh Chittajallu ◽  
Kurt Auville ◽  
Vivek Mahadevan ◽  
Mandy Lai ◽  
Steven Hunt ◽  
...  

The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.


2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Wu ◽  
Chengying Li ◽  
Bin Xu ◽  
Ying Xiang ◽  
Xiaoyue Jia ◽  
...  

Abstract Background Circular RNA (circRNA) have been reported to play important roles in cardiovascular diseases including myocardial infarction and heart failure. However, the role of circRNA in atrial fibrillation (AF) has rarely been investigated. We recently found a circRNA hsa_circ_0099734 was significantly differentially expressed in the AF patients atrial tissues compared to paired control. We aim to investigate the functional role and molecular mechanisms of mmu_circ_0005019 which is the homologous circRNA in mice of hsa_circ_0099734 in AF. Methods In order to investigate the effect of mmu_circ_0005019 on the proliferation, migration, differentiation into myofibroblasts and expression of collagen of cardiac fibroblasts, and the effect of mmu_circ_0005019 on the apoptosis and expression of Ito, INA and SK3 of cardiomyocytes, gain- and loss-of-function of cell models were established in mice cardiac fibroblasts and HL-1 atrial myocytes. Dual-luciferase reporter assays and RIP were performed to verify the binding effects between mmu_circ_0005019 and its target microRNA (miRNA). Results In cardiac fibroblasts, mmu_circ_0005019 showed inhibitory effects on cell proliferation and migration. In cardiomyocytes, overexpression of mmu_circ_0005019 promoted Kcnd1, Scn5a and Kcnn3 expression. Knockdown of mmu_circ_0005019 inhibited the expression of Kcnd1, Kcnd3, Scn5a and Kcnn3. Mechanistically, mmu_circ_0005019 exerted biological functions by acting as a miR-499-5p sponge to regulate the expression of its target gene Kcnn3. Conclusions Our findings highlight mmu_circ_0005019 played a protective role in AF development and might serve as an attractive candidate target for AF treatment.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Donghong Zhang ◽  
Jinfeng Ning ◽  
Imoh Okon ◽  
Xiaoxu Zheng ◽  
Ganesh Satyanarayana ◽  
...  

AbstractOncogenic KRAS mutations combined with the loss of the LKB1 tumor-suppressor gene (KL) are strongly associated with aggressive forms of lung cancer. N6-methyladenosine (m6A) in mRNA is a crucial epigenetic modification that controls cancer self-renewal and progression. However, the regulation and role of m6A modification in this cancer are unclear. We found that decreased m6A levels correlated with the disease progression and poor survival for KL patients. The correlation was mediated by a special increase in ALKBH5 (AlkB family member 5) levels, an m6A demethylase. ALKBH5 gain- or loss-of function could effectively reverse LKB1 regulated cell proliferation, colony formation, and migration of KRAS-mutated lung cancer cells. Mechanistically, LKB1 loss upregulated ALKBH5 expression by DNA hypermethylation of the CTCF-binding motif on the ALKBH5 promoter, which inhibited CTCF binding but enhanced histone modifications, including H3K4me3, H3K9ac, and H3K27ac. This effect could successfully be rescued by LKB1 expression. ALKBH5 demethylation of m6A stabilized oncogenic drivers, such as SOX2, SMAD7, and MYC, through a pathway dependent on YTHDF2, an m6A reader protein. The above findings were confirmed in clinical KRAS-mutated lung cancer patients. We conclude that loss of LKB1 promotes ALKBH5 transcription by a DNA methylation mechanism, reduces m6A modification, and increases the stability of m6A target oncogenes, thus contributing to aggressive phenotypes of KRAS-mutated lung cancer.


Sign in / Sign up

Export Citation Format

Share Document